Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán thực tế trong đề tuyển sinh vào 10 THPT

Tài liệu gồm 102 trang hướng dẫn phương pháp giải các bài toán thực tế trong đề tuyển sinh vào 10 THPT, đây là một dạng toán mới được đưa vào đề thi tuyển sinh vào lớp 10 môn Toán trong những năm gần đây, nhằm giúp học sinh khối THCS thấy được ứng dụng của toán học trong đời sống thực tiễn, tài liệu được biên soạn bởi tác giả Toán Họa. Khái quát nội dung tài liệu các bài toán thực tế trong đề tuyển sinh vào 10 THPT : CÁC DẠNG TOÁN Dạng toán 1 : Lãi suất ngân hàng. + Lãi đơn: Số tiền lãi chỉ tính trên số tiền gốc mà không tinh trên số tiền lãi do số tiền gốc sinh ra. + Lãi kép: Là số tiền lãi không chỉ tính trên số tiền gốc mà còn tính trên số tiền lãi do tiền gốc sinh ra thay đổi theo từng định kì. Dạng toán 2 : Giải hệ phương trình – giải phương trình. + Dạng toán giải toán bằng cách lập phương trình, hệ phương trình bậc nhất hai ẩn thường xuyên gặp trong những đề thi tuyển sinh lớp 10. Đây là dạng toán khó trong chương trình Trung học cơ sở. Học sinh thường xuyên quên và chưa biết áp dụng các kiến thức liên quan để giải toán. + Khi lập được hệ phương trình ta áp dụng các phương pháp đã học để giải tìm nghiệm của bài toán. + Phương pháp giải tổng quát của loại toán này là: ta lần lượt đặt từng thành phần là x, y và dựa vào các giả thiết của bài toán để lập hai phương trình thể hiện mối liên quan của các ẩn và từ đó giải để được x, y. Đối chiếu điều kiện của ẩn. + Hiển nhiên, nếu sau này kết hợp với kiến thức phương trình bậc hai, ta có những hệ phương trình cao hơn nhưng chung quy lại vẫn dùng những kiến thức cơ sở này. + Loại toán giải bằng cách lập hệ phương trình bậc nhất hai ẩn số có bốn dạng chính: dạng toán về số, dạng toán chuyển động, dạng toán năng suất, dạng toán ứng dụng hình học. [ads] Dạng toán 3 : Vận dụng trong hình học. + Vận dụng định lý Pytago. + Vận dụng kiến thức về hệ thức giữa cạnh và đường cao trong tam giác vuông. + Vận dụng hệ thức liên hệ giữa cạnh và góc trong tam giác vuông. Dạng toán 4 : Vận dụng các công thức hóa – lý. + Vận dụng các công thức Vật lý: I = U/R (I là cường độ dòng điện, U là hiệu điện thế, R là điện trở). + Vận dụng công thức Hóa học: nồng độ phần trăm, nồng độ mol, khối lượng riêng của dung dịch, đổi đơn vị. MỘT SỐ BÀI TẬP PHÂN DẠNG TỰ LUYỆN Dạng toán 1 : Bài toán kinh tế, tăng trưởng, tăng dân số, lãi suất, tiền điện, tiền taxi. Dạng toán 2 : Giải bài toán bằng cách lập phương trình dạng bậc nhất hoặc lập hệ phương trình. Dạng toán 3 : Giải bài toán bằng cách lập hệ phương trình, lập phương trình.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề biến đổi đại số ôn thi vào lớp 10
Tài liệu gồm 31 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. KIẾN THỨC CẦN NHỚ 1.1 CĂN THỨC BẬC 2. Kiến thức cần nhớ: Căn bậc hai của số thực a là số thực x sao cho 2 x a. Cho số thực a không âm. Căn bậc hai số học của a kí hiệu là a là một số thực không âm x mà bình phương của nó bằng a. Với hai số thực không âm a b ta có: a b ab. Khi biến đổi các biểu thức liên quan đến căn thức bậc 2 ta cần lưu ý: phép khử căn thức ở mẫu; phép trục căn thức ở mẫu. 1.2 CĂN THỨC BẬC 3 – CĂN BẬC n. 1.2.1 CĂN THỨC BẬC 3. Kiến thức cần nhớ: Căn bậc 3 của một số a kí hiệu là 3 a là số x sao cho 3 x a. Mỗi số thực a đều có duy nhất một căn bậc 3. 1.2.2 CĂN THỨC BẬC n. Cho số a Rn Nn 2. Căn bậc n của một số a là một số mà lũy thừa bậc n của nó bằng a. Trường hợp n là số lẻ: n k kN 2 1. Mọi số thực a đều có một căn bậc lẻ duy nhất. Trường hợp n là số chẵn: n kk N 2. Mọi số thực a > 0 đều có hai căn bậc chẵn đối nhau. Căn bậc chẵn dương kí hiệu là 2k a (gọi là căn bậc 2k số học của a). Căn bậc chẵn âm kí hiệu là 2k a 2 0 k ax x và 2k x a. Mọi số thực a < 0 đều không có căn bậc chẵn. MỘT SỐ VÍ DỤ MỘT SỐ BÀI TẬP RÈN LUYỆN
Một số bài toán về đường cố định và điểm cố định
Tài liệu gồm 71 trang, tuyển chọn một số bài toán về đường cố định và điểm cố định hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ Bài toán về đường cố định và điểm cố định là một bài toán khó, đòi hỏi học sinh phải có kĩ năng phân tích bài toán và suy nghĩ, tìm tòi một cách sâu sắc để tìm ra được lời giải. Một vấn đề quan trọng khi giải bài toán về đường cố định và điểm cố định dự đoán được yếu tố cố định. Thông thường ta dự đoán các yếu tố cố định bằng các phương pháp sau: + Giải bài toán trong trường hợp đặc biệt để thấy được yếu tố cố định cần tìm. Từ đó ta suy ra trường hợp tổng quát. + Xét các đường đặc biệt để của một họ đường để thấy được yếu tố cố định cần tìm. + Dựa vào tính đối xứng, tính độc lập, bình đẳng của các đối tượng để hạn chế phạm vi của hình tứ đó có thể tìm được yếu tố cố định. Khi giải bài toán về đường cố định và điểm cố định ta thường thực hiện các bước như sau: a) Tìm hiểu bài toán: Khi tìm hiểu bài toán ta xác định được: + Yếu tố cố định: điểm, đường …. + Yếu tố chuyển động: điểm, đường …. + Yếu tố không đổi: độ dài đoạn, độ lớn góc …. + Quan hệ không đổi: song song, vuông góc, thẳng hàng …. b) Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt của yếu tố chuyển động để dự đoán yếu tố cố định. Thông thường ta tìm một hoặc hai vị trí đặc biệt cộng thêm với các đặc điểm bất biến khác như tính chất đối xứng, song song, thẳng hàng … để dự đoán điểm cố định. c) Tìm tòi hướng giải: Từ việc dự đoán yếu tố cố định tìm mối quan hệ giữa yếu tố đó với các yếu tố chuyển động, yếu tố cố định và yếu tố không đổi. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Một số bài toán về diện tích
Tài liệu gồm 69 trang, tuyển chọn một số bài toán về diện tích hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Các tính chất cơ bản của diện tích đa giác. Mỗi đa giác có một diện tích xác định, diện tích đa giác là một số dương. Diện tích đa giác có các tính chất sau: + Hai đa giác bằng nhau có diện tích bằng nhau. + Hình vuông cạnh có độ dài bằng 1(đvđd) thì diện tích là 1(đvdt), hình vuông đó được gọi là hình vuông đơn vị. + Nếu đa giác H được chia thành các đa giác H H H 1 2 n đôi một không có điểm chung trong. Khi đó ta được H H H H 1 2 n S S S S. + Nếu một đa giác H suy biến có H S 0 thì các đỉnh của đa giác cùng nằm trên một đường thẳng. 2. Diện tích tam giác. Cho tam giác ABC có các cạnh là a, b, c và abc p 2 là nửa chu vi. Gọi abc h h h là đường cao tương ứng với các cạnh a, b, c và abc r r r là bán kính đường tròn bàng tiếp ứng với các cạnh a, b, c. Gọi R và r lần lượt là bán kính đường tròn nội tiếp và đường tròn ngoại tiếp ta giác ABC. 3. Diện tích các tứ giác. + Diện tích hình chữ nhật: S a b với a, b là độ dài hai cạnh của hình chữ nhật. + Diện tích hình thang: ha b S 2 với a, b là độ dài hai đáy và h là chiều cao. + Diện tích hình bình hành: a S ah với a và a h là độ dài cạnh và đường cao tương ứng. + Diện tích tứ giác có hai đường chéo vuông góc: 1 2 1 S dd 2 với d d 1 2 là độ dài hai đường chéo. + Diện tích hình thoi: 1 2 1 S ah d d 2 với a và h là độ dài cạnh và đường cao, d1 và d2 là độ dài hai đường chéo. + Diện tích hình vuông: 2 2 1 Sa d 2 với a là độ dài cạnh và d là độ dài đường chéo của hình vuông. 4. Một số tính chất cơ bản về diện tích tam giác. + Nếu hai tam giác có cùng chiều cao thì tỉ số hai đáy tương ứng bằng tỉ số hai diện tích. Ngược lại, nếu hai tam giác có cùng đáy thì tỉ số hai chiều cao tương ứng bằng tỉ số hai diện tích. + Nếu hai tam giác có cùng chung đáy và có cùng diện tích thì đỉnh thứ ba thuộc đường thẳng song song với đáy. + Đường trung bình trong một tam giác chia tam giác đó thành hai phần có diện tích tỉ lệ với 1 : 3. + Đường trung tuyến của một tam giác chia tam giác đó thành hai phần có diện tích bằng nhau. + Ba tam giác có chung đỉnh là trọng tâm của một tam giác còn đáy là ba cạnh thì có diện tích bằng nhau. + Nếu một tam giác và một hình bình hành có cùng đáy và cùng chiều cao thì diện tích tam giác bằng nửa diện tích hình bình hành. + Với mọi tam giác ABC ta luôn có AB AC 2 SABC dấu bằng xẩy ra khi tam giác ABC vuông tại A. + Hai tam giác ABC và A’B’C’ có AA’ hoặc 0 AA’ 180 thì ABC A’B’C’ S AB.AC S A’B’A’C’. Các tính chất nêu trên của tam giác được chứng minh tương đối đơn giản và ta sẽ công nhận chúng khi giải các bài toán về diện tích. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học
Tài liệu gồm 102 trang, tuyển chọn các bài toán về bất đẳng thức và cực trị hình học hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Liên hệ giữa cạnh và góc trong tam giác. Định lí 1: Cho tam giác ABC. Nếu ABC ACB thì AC AB và ngược lại. Định lí 2: Cho hai tam giác ABC và MNP có AB MN và AC MP. Khi đó ta có bất đẳng thức BAC NMP BC NP. Định lí 3: Trong tam giác ABC ta có. Định lí 4: Với mọi tam giác ABC ta luôn có. Hệ quả: Cho n điểm A A A A 123 n. Khi đó ta luôn có. Dấu bằng xẩy ra n điểm A A A A 123 n thẳng hàng và sắp xếp theo thứ tự đó. Định lí 5: Cho tam giác ABC và M là trung điểm của BC. Khi đó ta có. 2. Quan hệ giữa đường xiên, đường vuông góc và hình chiếu của đường xiên. Định lí 1: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất. Định lí 2: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó: Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. Nếu hai đường xiên bằng nhau thì hai hình chiếu bằng nhau, và ngược lại, nếu hai hình chiếu bằng nhau thì hai đường xiên bằng nhau. 3. Các bất đẳng thức trong đường tròn. Định lí 1: Trong một đường tròn thì đường kính là dây lớn nhất. Định lí 2: Trong một đường tròn: Hai dây bằng nhau thì cách đều tâm và ngược lại. Dây nào lớn hơn thì dây đó gần tâm hơn và ngược lại. Định lí 3: Bán kính của hai đường tròn là R r, còn khoảng cách giữa tâm của chúng là d. Điều kiện cần và đủ để hai đường tròn đó cắt nhau là R r d R r. Định lí 4: Cho đường tròn (O; R) và một điểm M bất kì nằm trong đường tròn. Khi đó ta có R d N R d. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. Định lí 5: Cho đường tròn (O; R) và một điểm M bất kì ngoài đường tròn. Khi đó ta có d R MN d R. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. 4. Các bất đẳng thức về diện tích. Định lí 1: Với mọi tam giác ABC ta luôn có ABC 1 S AB AC 2, dấu bằng xẩy ra khi và chỉ khi tam giác ABC vuông tại A. Định lí 2 : Với mọi tứ giác ABC ta luôn có ABCD 1 S AC BD 2, dấu bằng xẩy ra khi và chỉ khi AC vuông góc với BD. Định lí 3: Với mọi tứ giác ABCD ta luôn có ABCD 1 S AB BC AD DC 2, dấu bằng xẩy ra khi và chỉ khi 0 B D 90. 5. Một số bất đẳng thức đại số thường dùng. Với x, y là các số thực dương, ta luôn có 2 2 2 2 2 x y 2xy 2 x y x y, dấu bằng xẩy ra khi và chỉ khi x y. Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Cauchy: Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Bunhiacopxki. Với a, b, c và x, y, z là các số thực, ta luôn có. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI