Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 1 năm học 2019 - 2020 trường Lê Văn Thịnh - Bắc Ninh

Chủ Nhật ngày 03 tháng 11 năm 2019, trường THPT Lê Văn Thịnh, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề KSCL Toán 12 lần 1 năm học 2019 – 2020 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 111, đề gồm 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có 06 trang. Trích dẫn đề KSCL Toán 12 lần 1 năm học 2019 – 2020 trường Lê Văn Thịnh – Bắc Ninh : + Một công ty dự kiến làm một đường ống thoát nước thải hình trụ dài 1km, đường kính trong của ống (không kể lớp bê tông) bằng 1m; độ dày của lớp bê tông bằng 10cm. Biết rằng cứ một mét khối bê tông phải dùng 10 bao xi măng. Số bao xi măng công ty phải dùng để xây dựng đường ống thoát nước gần đúng với số nào nhất sau đây? [ads] + Trong một cuộc thi làm đồ dùng học tập do trường phát động, bạn Tuấn nhờ bố làm một hình chóp tứ giác đều bằng cách lấy một mảnh tôn hình vuông ABCD có cạnh bằng 5cm (tham khảo hình vẽ). Cắt mảnh tôn theo các tam giác cân AEB, BFC, CGD, DHA và sau đó gò các tam giác AEH, BEF, CFG, DGH sao cho bốn đỉnh A, B, C, D trùng nhau tạo thành khối chóp tứ giác đều. Thể tích lớn nhất của khối chóp tứ giác đều tạo thành bằng? + Cho hình chóp tứ giác đều S.ABCD. Khẳng định nào sau đây là sai? A. Đáy ABCD là hình thoi. B. Các mặt bên là các tam giác cân. C. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là tâm của đáy. D. Các mặt bên tạo với mặt đáy các góc bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 lần 4 năm 2022 - 2023 trường THPT Lê Xoay - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 4 năm học 2022 – 2023 trường THPT Lê Xoay, tỉnh Vĩnh Phúc; đề thi mã đề 132 gồm 05 trang, hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề KSCL Toán 12 lần 4 năm 2022 – 2023 trường THPT Lê Xoay – Vĩnh Phúc : + Người ta sử dụng một cuộn đề can hình trụ có đường kính 64,9 cm để in các băng rôn, khẩu hiệu chuẩn bị cho lễ ra quân năm 2023, do đó đường kính của cuộn đề can còn lại là 8,2 cm. Biết độ dày của tấm đề can là 0,04 cm, hãy tính chiều dài L của tấm đề can đã sử dụng? (Làm tròn đến hàng đơn vị). + Cho hàm số y f x liên tục trên và có đồ thị như hình vẽ bên dưới. Gọi S là tập hợp tất cả giá trị nguyên của tham số m để phương trình f x m x cos 2 1 2cos có nghiệm thuộc khoảng 0. Tổng các phần tử của S bằng? + Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có điểm A 1 2 3 B 5 0 1 C 1 2 0 D 0 3 4. Trên các cạnh AB AC AD lần lượt lấy các điểm M N P thỏa 9 AB AC AD AM AN AP và có thể tích AMNP nhỏ nhất. Khi đó mặt phẳng MNP đi qua điểm nào sau đây?
Đề KSCL lần 3 Toán 12 năm 2022 - 2023 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2022 – 2023 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc; đề thi mã đề 121, hình thức trắc nghiệm với 50 câu, thời gian làm bài: 90 phút, không kể thời gian phát đề. Trích dẫn đề KSCL lần 3 Toán 12 năm 2022 – 2023 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Khi xây nhà, cô Ngọc cần xây một bể đựng nước mưa có thể tích 3 V 6m dạng hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng, đáy và nắp và các mặt xung quanh đều được đổ bê tông, cốt thép. Phần nắp bể để hở một khoảng hình vuông có diện tích bằng 2 9 diện tích nắp bể. Biết rằng chi phí cho 2 1m bê tông cốt thép là 1.000.000 đ. Tính chi phí thấp nhất mà cô Ngọc phải trả khi xây bể (làm tròn đến hàng trăm nghìn)? + Cho hình lập phương ABCD A B C D cạnh a. Các điểm M N P theo thứ tự đó thuộc các cạnh B B C D D A sao cho 3 a BM C N DP. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng MNP. + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu 2 2 2 S x y z x y z 2 4 2 3 0 và mặt phẳng 2 2 14 0 P x y z. Điểm M thay đổi trên S, điểm N thay đổi trên P. Độ dài nhỏ nhất của MN bằng?
Đề KSCL lần 3 Toán 12 năm 2021 - 2022 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2021 – 2022 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL lần 3 Toán 12 năm 2021 – 2022 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trong không gian với hệ trục tọa độ Oxyz gọi P là mặt phẳng đi qua điểm H 1 2 5 và cắt các trục Ox Oy Oz lần lượt tại A B C (khác gốc tọa độ O) sao cho H là trực tâm tam giác ABC. Biết mặt phẳng P có phương trình ax by cz 30 0. Tính tổng T a b c. + Trong không gian Oxyz, cho điểm A 1 1 3 và 2 đường thẳng 1 4 2 1 1 4 2 x y z d 2 2 1 1 1 1 1 x y z d. Đường thẳng d đi qua A cắt 2 d và vuông góc với 1 d. Mặt phẳng P đi qua gốc tọa độ và chứa đường thẳng d. Biết mặt phẳng P có một véc tơ pháp tuyến là n a b 1. Biểu thức a b 1 bằng? + Cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ đã cho bằng?
Đề KSCL Toán 12 lần 5 năm 2020 - 2021 trường Nông Cống 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 5 năm học 2020 – 2021 trường THPT Nông Cống 1, tỉnh Thanh Hóa; đề thi có đáp án mã đề 190. Trích dẫn đề KSCL Toán 12 lần 5 năm 2020 – 2021 trường Nông Cống 1 – Thanh Hóa : + Trong không gian với hệ trục Oxyz, cho hai mặt phẳng 2 3 10 0 P x y z 2 2 7 0 Q x y z và mặt cầu 2 2 2 1 2 4 S x y z. Gọi M N lần lượt là hai điểm nằm trên S và Q sao cho MN luôn vuông góc với P. Giá trị nhỏ nhất và lớn nhất của MN tương ứng là a và b. Khi đó 2 2 a b là? + Cho hàm số 4 2 y f x a x m b x m c có đồ thị như hình vẽ minh họa dưới đây. Biết đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt lập thành một cấp số cộng. Gọi 1 2 3 S S S là diện tích các hình phẳng giới hạn bởi đồ thị hàm số và trục hoành như hình vẽ. Tính tỉ số 1 3 2 S S t S. + Cho hàm số y f x có đồ thị đạo hàm được cho như hình vẽ bên dưới và có f 1 1. Gọi S là tập tất cả các giá trị nguyên của m thuộc [-2021;2021] để hàm số 2 y f x x mx 2 2 2 12 đồng biến trên (1;3). Số phần tử của S là?