Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp công thức Toán THPT Nguyễn Thanh Tân
Nội dung Tổng hợp công thức Toán THPT Nguyễn Thanh Tân Bản PDF - Nội dung bài viết Tổng hợp công thức Toán THPT Nguyễn Thanh Tân Tổng hợp công thức Toán THPT Nguyễn Thanh Tân Tài liệu "Tổng hợp công thức Toán THPT Nguyễn Thanh Tân" bao gồm 24 trang, được sưu tầm và biên soạn bởi thầy giáo Nguyễn Thanh Tân, một giáo viên dạy Toán tại trường THPT Nho Quan C, tỉnh Ninh Bình. Tài liệu này là sự tổng hợp của những công thức Toán dành cho học sinh cấp 3, từ lớp 10 đến lớp 12.
201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết
Nội dung 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết Bản PDF - Nội dung bài viết 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán Tài liệu này bao gồm 202 trang, tập hợp 201 câu hỏi được chọn lọc để ôn thi tốt nghiệp THPT môn Toán, với đáp án và lời giải chi tiết. Các câu hỏi được lấy từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên khắp đất nước. Ví dụ về một câu hỏi trong tài liệu là: "Có bao nhiêu số thực m để đường thẳng y = mx cắt đồ thị hàm số y = x^2 tại ba điểm phân biệt A, B, C, sao cho đường thẳng OA là phân giác của góc BOC?" Đặc điểm của tài liệu này là cung cấp những câu hỏi mang tính chất bám sát đề thi THPT Quốc gia, giúp học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Đồng thời, việc có đáp án và lời giải chi tiết giúp học sinh hiểu rõ về cách giải các dạng bài tập khó, từ đó nâng cao kiến thức và kỹ năng giải toán của mình. Nếu bạn đang chuẩn bị cho kỳ thi tốt nghiệp THPT và đang tìm kiếm tài liệu ôn thi hiệu quả, tài liệu này chắc chắn là một lựa chọn hữu ích dành cho bạn. Hãy cùng tham khảo và ôn tập để chinh phục kỳ thi với thành công!
Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh
Nội dung Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh Bản PDF - Nội dung bài viết Chinh phục vận dụng cao Giải tích Phan Nhật Linh Chinh phục vận dụng cao Giải tích Phan Nhật Linh Chinh phục vận dụng vận dụng cao Giải tích Phan Nhật Linh là một tài liệu giáo khoa có 526 trang được biên soạn bởi thầy giáo Phan Nhật Linh. Tài liệu này tập trung vào việc giải các bài toán vận dụng và vận dụng cao trong Giải tích, với các chủ đề chính là hàm số, mũ và logarit, tích phân, số phức, tổ hợp và xác suất. Được thiết kế đặc biệt cho học sinh lớp 12, tài liệu này giúp học sinh rèn luyện kỹ năng giải bài toán để chinh phục mức điểm cao trong đề thi tốt nghiệp THPT môn Toán, đặc biệt là điểm từ 8 đến 10. Chương 1 của tài liệu tập trung vào hàm số, bao gồm tính đơn điệu, cực trị, giá trị lớn nhất/nhỏ nhất của hàm số, tiệm cận và sự tương giao của đồ thị hàm số. Chương 2 chú trọng vào mũ và logarit, với các bài toán vận dụng phức tạp và cao cấp trong lĩnh vực này. Chương 3 và 4 tập trung vào tích phân và số phức, cung cấp đề vận dụng cao để học sinh có thể áp dụng kiến thức vào bài toán thực tế. Chương 5 đề cập đến tổ hợp và xác suất, mang đến cho học sinh những bài toán vận dụng cao trong lĩnh vực này. Tài liệu Chinh phục vận dụng cao Giải tích Phan Nhật Linh là một công cụ học tập hiệu quả giúp học sinh nắm vững kiến thức và kỹ năng giải bài toán trong môn Toán, đồng thời nâng cao khả năng chuẩn bị cho kỳ thi tốt nghiệp THPT.
Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)
Nội dung Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Bản PDF - Nội dung bài viết Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1)PHẦN 1: GIẢI TÍCH Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) Tài liệu này được biên soạn bởi thầy giáo Trần Thanh Hiếu, gồm 290 trang, tập hợp các chuyên đề luyện thi TN THPT 2022 môn Toán. Nội dung chi tiết được chia thành các phần như sau: PHẦN 1: GIẢI TÍCH Chương 1: Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số Bài 1: Sự đồng biến – nghịch biến của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm khoảng đơn điệu của hàm số 2. Tìm m để hàm số đồng biến – nghịch biến C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 2: Cực trị của hàm số A. Lý thuyết cơ bản cần nhớ B. Thuật toán của một số dạng toán thường gặp 1. Tìm cực trị của hàm số 2. Biện luận cực trị của hàm số C. Phiếu học tập Phiếu học tập số 1 Phiếu học tập số 2 Bài 3: Giá trị lớn nhất – giá trị nhỏ nhất ... Hơn nữa, tài liệu còn đi sâu vào các phần khác như Hình học với chương trình rõ ràng, chi tiết và dễ hiểu giúp học sinh nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Tóm lại, Tài liệu luyện thi TN THPT 2022 môn Toán Trần Thanh Hiếu (Quyển 1) là công cụ hữu ích để học sinh tự ôn tập, rèn luyện kỹ năng giải bài tập, củng cố kiến thức và chuẩn bị tốt cho kỳ thi quan trọng.