Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kỳ 2 Toán 9 năm 2020 - 2021 trường Bế Văn Đàn - Hà Nội

Đề thi giữa học kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2020 – 2021 trường Bế Văn Đàn – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chu vi 160 m. Nếu tăng chiều rộng thêm 10m và giảm chiều dài đi 10m thì diện tích của mảnh đất tăng thêm 100m. Tính chiều dài và chiều rộng ban đầu của mảnh đất. + Cho hệ phương trình. a) Giải hệ phương trình khi m = 4. b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x; y là hai số đối nhau. + Cho đường tròn (O). Điểm A ở ngoài đường tròn (O). Qua A kẻ cát tuyến d cắt đường tròn (O) tại hai điểm B và C (B nằm giữa A và C). Kẻ Đường kính EF BC tại D (E thuộc cung nhỏ BC).Tia AF cắt đường tròn (O) tại điểm thứ hai là I, các dây EI và BC cắt nhau ở K. a) Chứng minh tứ giác DKIF nội tiếp. b) Chứng minh EB = EK EI. c) Chứng minh BE là tiếp tuyến của đường tròn ngoại tiếp AKIB. d) Cho ba điểm A, B, C cố định. Chứng minh rằng khi đường tròn (O) thay đổi nhưng vẫn đi qua BC thì đường thẳng EI luôn đi qua 1 điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa HK2 Toán 9 năm 2017 - 2018 phòng GD và ĐT Quận Tây Hồ - Hà Nội
Đề kiểm tra giữa HK2 Toán 9 năm 2017 – 2018 phòng GD và ĐT Quận Tây Hồ – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 9, đồng thời giúp các em ôn luyện chuẩn bị cho kỳ thi tuyển sính vào lớp 10 môn Toán năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra giữa HK2 Toán 9 : + Theo kế hoạch hai tổ được giao sản xuât 600 sản phẩm trong một thời gian đã định. Do cải tiến kỹ thuật nên tôt I đã sản xuất vượt mức kế hoạch 18% và tổ II sản xuất vượt mức kế hoạch 21%. Vì vậy trong cùng một thời gian quy định hai tổ đã hoàn thành vượt mức 120 sản phẩm. Tính số sản phẩm được giao của mỗi tổ theo kế hoạch. [ads] + Cho đường tròn (O;R). Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Từ B kẻ đường thẳng song song với AC cắt (O) tại D (D khác B), đường thẳng AD cắt (O) tại E (E khác D). a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh: AE.AD = AB^2. c) Chứng minh góc CEA = BEC. d) Giả sử OA = 3R. Tính khoảng cách giữa hai đường thẳng AC và BD theo R.