Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Lead 2024 Smartkey bản đen mờ với chi phí mua vào một chiếc là 37 triệu đồng và bán ra là 41 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một tháng là 60 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một tháng sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD có kích thước AB = 2m, AD = 3m, phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh CD tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu? + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 20 kg gạo nếp, 2 kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh ống. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh ống cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg đậu xanh. Mỗi cái bánh chưng nhận được 5 điểm thưởng, mỗi cái bánh ống nhận được 7 điểm thưởng. Hỏi điểm thưởng cao nhất có thể đạt được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia lần 1 lớp 10 môn Toán trường THPT Yên Phong 1 Bắc Ninh
Nội dung Đề thi thử THPT Quốc gia lần 1 lớp 10 môn Toán trường THPT Yên Phong 1 Bắc Ninh Bản PDF Đề thi thử THPT Quốc gia lần 1 môn Toán lớp 10 trường THPT Yên Phong 1 – Bắc Ninh mã đề 132 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án . Theo như dự kiến của Bộ Giáo dục và Đào tạo, kỳ thi THPT Quốc gia 2019 sẽ bao gồm  cả chương trình Toán lớp 10, 11 và 12, do đó, nhiều trường THPT trên toàn quốc đã sớm tổ các các đợt thi thử THPT Quốc gia môn Toán dành cho học sinh lớp 10, nhằm giúp các em có điều kiện rèn luyện thường xuyên và làm quen với hình thức, cấu trúc đề thi. Trích dẫn đề thi thử Toán lớp 10 : + Một của hàng buôn giày nhập một đôi với giá là 40 đôla. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x đôla thì mỗi tháng khách hàng sẽ mua (120 – x) đôi. Hỏi của hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất? [ads] + Một miếng giấy hình tam giác ABC diện tích S có I là trung điểm BC và O là trung điểm của AI. Cắt miếng giấy theo một đường thẳng qua O, đường thẳng này đi qua M, N lần lượt trên các cạnh AB, AC. Khi đó diện tích miếng giấy chứa điểm A có diện tích thuộc đoạn? + Cho tam giác ABC, biết |AB + AC| = |AB – AC|. Mệnh đề nào sau đây đúng? A. Tam giác ABC vuông tại A. B. Tam giác ABC vuông tại B. C. Tam giác ABC vuông tại C. D. Tam giác ABC cân tại A. File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 2 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi KSCL Toán lớp 10 : + Cho hình vuông ABCD cạnh a, trên cạnh AC lấy điểm M sao cho AM = AC/4. Gọi N là trung điểm DC. Chứng minh rằng tam giác BMN vuông cân. + Trên hệ trục Oxy cho các điểm A(1;2); B(4;0); C(3;-2). Chứng minh rằng 3 điểm A, B, C lập thành một tam giác. Tính diện tích tam giác ABC. [ads] + Cho tam giác ABC có trọng tâm G. Hãy biểu diễn véctơ AG qua các véctơ AB; AC. + Tìm tất cả các giá trị của tham số m để phương trình x^2 – 2(m + 1)x + m^2 – 2m = 0 có hai nghiệm x1, x2 sao cho: |x1 – x2| = 6. + Xác định a, b để đồ thị hàm số y = ax + b đi qua 2 điểm M(0;-2), N(2;4).
Đề thi KSCL lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 10 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 10 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong một cuộc điều tra dân số, báo cáo dân số của tỉnh X là 2615473 người ± 300 người. Viết số quy tròn của số gần đúng 2615473. + Chiều cao của một cây cổ thụ là 39,73 m ± 0,2 m. Viết số quy tròn của số gần đúng 39,73. [ads] + Cho hai tập hợp A = {1; 2; 3; 4; 5}, B = {1; 2; 3; 6}. Tìm tất cả các tập hợp X sao cho X ⊂ A và X ⊂ B. + Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh : vtAD + vtBC = 2.vtMN. + Chứng minh rằng ít nhất 1 trong 3 phương trình bậc hai sau đây có nghiệm: ax^2 + 2bx + c = 0, bx^2 + 2cx + a = 0, cx^2 + 2ax + b = 0 (x là ẩn).
Đề thi khảo sát chuyên đề lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Nguyễn Thị Giang Vĩnh Phúc
Nội dung Đề thi khảo sát chuyên đề lớp 10 môn Toán lần 1 năm học 2017 2018 trường THPT Nguyễn Thị Giang Vĩnh Phúc Bản PDF Đề thi khảo sát chuyên đề Toán lớp 10 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Nếu a chia hết cho 9 thì a chia hết cho 3 B. Nếu em chăm chỉ thì em thành công C. Nếu a ≥ b thì a^2 ≥ b^2 D. Nếu một tam giác có một góc bằng 60 độ thì tam giác đó là đều [ads] + Trong các khẳng định sau, khẳng định nào đúng: A. Hai vectơ cùng phương với vectơ thứ ba thì cùng phương B. Hai vectơ cùng phương với vectơ thứ ba thì cùng hướng C. Hai vectơ cùng phương với vectơ thứ ba khác vt0 thì cùng phương D. Hai vectơ cùng hướng với vectơ thứ ba thì cùng hướng + Mệnh đề “∃x ∈ R: x^2 = 3” khẳng định rằng: A. Có ít nhất 1 số thực mà bình phương của nó bằng 3 B. Nếu x là số thực thì x^2 = 3 C. Chỉ có 1 số thực có bình phương bằng 3 D. Bình phương của mỗi số thực bằng 3 File WORD (dành cho quý thầy, cô):