Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Lead 2024 Smartkey bản đen mờ với chi phí mua vào một chiếc là 37 triệu đồng và bán ra là 41 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một tháng là 60 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một tháng sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD có kích thước AB = 2m, AD = 3m, phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh CD tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu? + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 20 kg gạo nếp, 2 kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh ống. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh ống cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg đậu xanh. Mỗi cái bánh chưng nhận được 5 điểm thưởng, mỗi cái bánh ống nhận được 7 điểm thưởng. Hỏi điểm thưởng cao nhất có thể đạt được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL chuyên đề lần 1 năm học 2017 2018 lớp 10 môn Toán trường THPT Bình Xuyên Vĩnh Phúc
Nội dung Đề thi KSCL chuyên đề lần 1 năm học 2017 2018 lớp 10 môn Toán trường THPT Bình Xuyên Vĩnh Phúc Bản PDF Đề thi KSCL chuyên đề lần 1 năm học 2017 – 2018 môn Toán lớp 10 trường THPT Bình Xuyên – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Cho ba điểm A(1; 2), B(-2; 3), C(2; -1). Tứ giác ABCD là hình bình hành thì tọa độ điểm D là: A. D(4; -4) B. D(5; 2) C. D(4; -2) D. D(5; -2) [ads] + Cho hàm số y = 2x^2 – 4x + 1. Mệnh đề nào sau đây là sai? A. Hàm số giảm trên khoảng (-∞; 0) B. Trục đối xứng của đồ thị hàm số là đường thẳng x = 2 C. Đồ thị hàm số có đỉnh I(1; -1) D. Hàm số đồng biến trên khoảng (1; +∞) + Khẳng định nào sau đây sai? A. Véctơ 0 cùng phương và cùng hướng với mọi véctơ B. Hai véctơ cùng hướng thì cùng phương với nhau C. Hai véctơ cùng phương khi chúng cùng nằm trên một đường thẳng D. Hai véctơ bằng nhau khi và chỉ khi chúng có cùng hướng và cùng độ dài File WORD (dành cho quý thầy, cô):
Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4
Nội dung Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4 Bản PDF Đề thi khảo sát chất lượng Toán lớp 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.