Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm học 2019 - 2020 sở GDKHCN Bạc Liêu

Sáng thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán 11 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 sở GDKHCN Bạc Liêu mã đề 124, đề thi gồm có 03 trang với 20 câu trắc nghiệm (chiếm 6,0 điểm) và 03 câu tự luận (chiếm 4,0 điểm), học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề thi HK1 Toán 11 năm học 2019 – 2020 sở GDKHCN Bạc Liêu : + Trong một cuộc thi, Ban tổ chức dùng 7 cuốn sách môn Toán, 6 cuốn sách môn Vật lý và 5 cuốn sách môn Hóa học để làm phần thưởng cho 9 học sinh có kết quả cao nhất. Các cuốn sách cùng thể loại Toán, Vật lý, Hóa học đều giống nhau. Mỗi thí sinh nhận thưởng sẽ được hai cuôn sách khác thể loại, trong đó có An. Tính xác suất để An nhận thưởng có sách Toán. + Từ 20 học sinh ưu tú gồm 10 nam và 10 nữ, người ta muốn thành lập một đoàn đại biểu gồm 6 người để tham dự một buổi hội thảo, trong đó có 1 trưởng đoàn là nam và 2 phó đoàn là nữ. Hỏi có bao nhiêu cách thành lập một đoàn đại biểu như vậy? [ads] + Một.cơ sở khoan giếng đưa ra định mức giá như sau: Giá cùa mét khoan đầu tiên là 10000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 3000 đồng so với giá của mét khoan ngay trước đó. Một người muốn ký họp đồng với cơ sở khoan giếng này để khoan một giếng sâu 100 mét lấy nước dùng cho sinh hoạt của gia đình. Hỏi sau khi hoàn thành việc khoan giêng, gia đình đó phải thanh toán cho cợ sở khoan giêng sô tiên băng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình thang, với đáy lớn là AD và AD = 2BC. Tìm giao điểm của đường thẳng CD và mặt phẳng (SAB). Gọi I là điểm nằm trên cạnh SC sao cho 2SC = 3SI. Chứng minh đường thẳng SA song song với mặt phẳng (BID). + Từ một hộp chứa 7 quả cầu màu đỏ và 5 quả cầu màu vàng, Hùng lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để Hùng lấy được 3 quả cầu trong đó có hai quả cầu màu đỏ.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kì 1 Toán 11 năm 2019 - 2020 trường THPT Thủ Đức - TP HCM
Đề kiểm tra học kì 1 Toán 11 năm 2019 – 2020 trường THPT Thủ Đức – TP HCM gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kì 1 Toán 11 năm 2019 – 2020 trường THPT Thủ Đức – TP HCM : + Chứng chỉ tin học MOS (Microsoft Office Specialist) là bài thi đánh giá kỹ năng tin học văn phòng được sử dụng rộng rãi trên thế giới. Đội tuyển thi học sinh giỏi MOS của một trường trung học gồm 5 học sinh khối 10 và 8 học sinh khối 11. Nhà trường cần chọn một đội gồm 3 học sinh để tham dự ngày hội công nghệ thông tin do tập đoàn Microsoft tổ chức. Hỏi có bao nhiêu cách thành lập đội trên sao cho có ít nhất 2 học sinh khối 11? + Tại trạm xe buýt có 5 hành khách đang chờ xe đón, trong đó có 2 bạn An và Bình. Khi đó có 1 chiếc xe ghé trạm đón khách, biết rằng lúc đó còn đúng 9 ghế trống trên xe được đánh số từ 1 đến 9 như hình vẽ bên dưới. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của AB, AD và SC. a) Chứng minh MN // (SBD). b) Tìm giao điểm của đường thẳng SB và (OMP). c) Gọi G là giao điểm của CN và BD, Q là điểm đối xứng của C qua D, H là giao điểm của SD và PQ. Chứng minh GH // (SAB).
Đề kiểm tra học kỳ 1 Toán 11 năm 2019 - 2020 trường Trưng Vương - TP HCM
Đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường Trưng Vương – TP HCM được biên soạn theo dạng đề tự luận, đề gồm 01 trang với 06 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường Trưng Vương – TP HCM : + Cho hình chóp S.ABCD với ABCD là hình thang có đáy lớn là đoạn AD, biết AD = 2BC, O giao điểm của 2 đường chéo AC và BD. Gọi M là trung điểm của đoạn SC. a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b) Tìm giao điểm I của đường thẳng BM với mặt phẳng (SAD) và chứng minh IC // SB. c) Gọi K là trọng tâm của tam giác SCD. Chứng minh OK // (SBC). d) Gọi (a) là mặt phẳng chứa OK và song song với AD. Tìm thiết diện của (a) với hình chóp S.ABCD. + Một hộp chứa 19 viên bi gồm 8 bi xanh, 6 bi trắng và 5 bi đỏ. Lấy ra ngẫu nhiên 4 viên bi từ hộp trên. Gọi A là biến cố “Có đủ cả ba màu xanh, trắng và đỏ trong 4 bi được lấy ra”. Tính xác suất của biến cố A. + Cho tập hợp X = {0; 1; 2; 3; 4; 5; 6}. Từ tập X có thể lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau sao cho luôn có mặt chữ số 1?
Đề kiểm tra học kỳ 1 Toán 11 năm 2019 - 2020 trường Việt Thanh - TP HCM
Đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường Việt Thanh – TP HCM được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 30 câu, chiếm 06 điểm, phần tự luận gồm 04 câu, chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 11 năm 2019 – 2020 trường Việt Thanh – TP HCM : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm M, N lần lượt là trung điểm của SD, BC. a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD); (SAB) và (SCD). b) Gọi điểm K là trung điểm OM. Chứng minh rằng NK // (SAB). c) Gọi điểm E là thuộc cạnh CD sao cho CD = 3CE. Tìm điểm I là giao điểm của SA và (BME). Tính tỉ số SI/IA. + Gọi S là tập hợp tất cả các số tự nhiên gồm có 3 chữ số (các chữ số không nhất thiết khác nhau). Lấy ra một số từ tập S. Tính xác suất để lấy được số chia hết cho 7. + Một hộp đựng 6 quả cầu màu đỏ, 4 quả cầu màu xanh. Lấy ngẫu nhiên đồng thời ra 3 quả cầu. Tính xác suất để trong 3 quả lấy ra có đúng 2 quả cầu màu đỏ.
Đề kiểm tra HKI Toán 11 năm 2019 - 2020 trường Trần Hưng Đạo - Hà Nội
Ngày 05/12/2019, trường THPT Trần Hưng Đạo – Hà Nội tổ chức kiểm tra chất lượng cuối học kỳ I môn Toán 11 năm học 2019 – 2020. Đề kiểm tra HKI Toán 11 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội (đề số 01) gồm có 01 trang, đề được biên soạn dưới dạng tự luận với 04 bài toán, học sinh có 90 phút để hoàn thành bài thi học kỳ. Trích dẫn đề kiểm tra HKI Toán 11 năm 2019 – 2020 trường Trần Hưng Đạo – Hà Nội : + Một hộp chứa 3 quả cầu đen và 2 cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu. + Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là 1/5 và 2/7 và hai người ném một cách độc lập với nhau. a) Tính xác suất để hai người cùng ném bóng trúng rổ. b) Tính xác suất để có ít nhất một người ném không trúng rổ. [ads] + Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SC và SD. 1) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). Chứng minh rằng đường thẳng MN song song với mặt phẳng (SAB). 2) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (OMN). Thiết diện là hình gì, tại sao? 3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và (OMN). Tính tỷ số IK/IG.