Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Giao Thủy Nam Định

Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Giao Thủy Nam Định Bản PDF xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề thi học sinh giỏi môn Toán năm 2016 - 2017 của phòng GD&ĐT Giao Thủy - Nam Định. Đề thi này bao gồm đáp án và lời giải chi tiết cho các câu hỏi sau:

1. Trong tam giác ABC, điểm O là trung điểm của đoạn thẳng BC. Kẻ đường thẳng BD vuông góc với AC tại điểm D, và kẻ đường thẳng CE vuông góc với AB tại điểm E.
a. Chứng minh rằng OD || BC.
b. Trên tia đối của tia DE, chọn điểm N; trên tia đối của tia ED, chọn điểm M sao cho DN = EM. Chứng minh rằng tam giác OMN là tam giác cân.

2. Cho các số nguyên dương a, b, c, d, e chia hết cho 2. Chứng minh rằng a + b + c + d + e là số hợp.

3. Cho tỷ lệ thức: a/b = c/d. Chứng minh rằng a^2/b^2 = c^2/d^2 (với điều kiện các tỷ lệ thức đều khác không).

Hi vọng đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện và củng cố kiến thức Toán một cách hiệu quả. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.