Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình mũ không chứa tham số

Tài liệu gồm 23 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình mũ không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP HÀM SỐ: Tính chất 1: Nếu hàm số y fx liên tục và luôn đồng biến (hoặc luôn nghịch biến) trên a b thì phương trình fx k có không quá một nghiệm trên a b. Tính chất 2: Nếu hàm số y fx liên tục và luôn đồng biến (hoặc luôn nghịch biến); hàm số y gx liên tục và luôn nghịch biến (hoặc luôn đồng biến) trên a b thì phương trình: f x gx có không quá một nghiệm trên a b. Tính chất 3: Nếu y fx đồng biến hoặc nghịch biến trên a b thì fu fv u v. Tính chất 4: Nếu n f x x ba hoặc n f x x ba thì phương trình f x 0 có nhiều nhất n nghiệm x ∈ (a;b). Tính chất 5: Cho hàm số y fx có đạo hàm đến cấp k liên tục trên a b. Nếu phương trình 0 k f x có đúng m nghiệm thì phương trình 1 0 k f x có nhiều nhất là m + 1 nghiệm. PHƯƠNG PHÁP ĐÁNH GIÁ: Quy tắc 1. Giải phương trình f x gx. Xác định 0 x x là một nghiệm của phương trình. Chứng minh với mọi 0 0 x x thì phương trình vô nghiệm. Kết luận 0 x x là nghiệm duy nhất. Quy tắc 2. Giải phương trình f x gx. Xét trên tập xác định D ta có fx m x D f x m gx x D gx m x D Phương trình thỏa mãn khi f x gx m Hoặc đánh giá trực tiếp f x gx. Từ đó tìm dấu xảy ra. Quy tắc 3. Sử dụng tính chất của hàm số lượng giác. Ta có: sin cos Điều kiện để hàm số lượng giác a xb x c cos sin có nghiệm là 222 abc Giá trị lượng giác của góc (cung) có liên quan đặc biệt. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM ĐẶC TRƯNG (KHÔNG CHỨA THAM SỐ) Nếu hàm số y fx đơn điệu trên K thì với mọi uv K ta có fu fv u v. Nếu hàm số y fx đơn điệu trên K thì trên K phương trình f x 0 có tối đa một nghiệm. Phương trình fu fv: Bước 1: Biến đổi phương trình về dạng fu fv với uv K trong đó y ft là hàm số đơn điệu trên K. Bước 2: Khảo sát hàm số y ft để đưa ra tính đơn điệu của hàm số y ft trên K. Bước 3: Kết luận fu fv u v. Phương trình f u 0. Bước 1: Biến đổi phương trình về dạng f u 0 với u K trong đó y ft là hàm số đơn điệu trên K. Bước 2: Khảo sát hàm số y ft để đưa ra tính đơn điệu của hàm số y ft trên K. Bước 3: Tìm giá trị 0 u sao cho f u 0 0. Bước 3: Kết luận phương trình 0 fu u u. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) Phương pháp đặt ẩn phụ không hoàn toàn là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. Phương pháp này thường được sử dụng đối với những phương trình khi lựa chọn ẩn phụ cho một biểu thức thì các biểu thức còn lại không biểu diễn được triệt để qua ẩn phụ đó hoặc nếu biểu diễn được thì công thức biểu diễn lại quá phức tạp. Sau khi biểu diễn ta thường được phương trình bậc hai theo ẩn phụ (hoặc vẫn theo ẩn x) có biệt số ∆ là một số chính phương. Tìm mối liên hệ giữa ẩn phụ và x sau đó thế trở lại để tìm x.

Nguồn: toanmath.com

Đọc Sách

Toàn tập cực trị mũ, logarit vận dụng cao
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.
Toàn tập lũy thừa, mũ và logarit cơ bản
Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức, tổng hợp toàn tập lũy thừa, mũ và logarit cơ bản (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Cơ bản hàm số lũy thừa. + Cơ bản hàm số lũy thừa – p1. + Cơ bản hàm số lũy thừa – p2. + Cơ bản hàm số lũy thừa – p3. + Cơ bản hàm số lũy thừa – p4. + Cơ bản hàm số lũy thừa – p5. + Cơ bản hàm số lũy thừa – p6. + Cơ bản hàm số lũy thừa – p7. Cơ bản hàm số mũ. + Cơ bản hàm số mũ – p1. + Cơ bản hàm số mũ – p2. + Cơ bản hàm số mũ – p3. + Cơ bản hàm số mũ – p4. + Cơ bản hàm số mũ – p5. + Cơ bản hàm số mũ – p6. + Cơ bản hàm số mũ – p7. Cơ bản hàm số logarit. + Cơ bản hàm số logarit – p1. + Cơ bản hàm số logarit – p2. + Cơ bản hàm số logarit – p3. + Cơ bản hàm số logarit – p4. + Cơ bản hàm số logarit – p5. + Cơ bản hàm số logarit – p6. + Cơ bản hàm số logarit – p7. Cơ bản phương trình, bất phương trình mũ. + Cơ bản phương trình, bất phương trình mũ – p1. + Cơ bản phương trình, bất phương trình mũ – p2. + Cơ bản phương trình, bất phương trình mũ – p3. + Cơ bản phương trình, bất phương trình mũ – p4. + Cơ bản phương trình, bất phương trình mũ – p5. + Cơ bản phương trình, bất phương trình mũ – p6. + Cơ bản phương trình, bất phương trình mũ – p7. + Cơ bản phương trình, bất phương trình mũ – p8. + Cơ bản phương trình, bất phương trình mũ – p9. + Cơ bản phương trình, bất phương trình mũ – p10. Cơ bản phương trình, bất phương trình logarit. + Cơ bản phương trình, bất phương trình logarit – p1. + Cơ bản phương trình, bất phương trình logarit – p2. + Cơ bản phương trình, bất phương trình logarit – p3. + Cơ bản phương trình, bất phương trình logarit – p4. + Cơ bản phương trình, bất phương trình logarit – p5. + Cơ bản phương trình, bất phương trình logarit – p6. + Cơ bản phương trình, bất phương trình logarit – p7. + Cơ bản phương trình, bất phương trình logarit – p8. + Cơ bản phương trình, bất phương trình logarit – p9. Bài tập tổng hợp lũy thừa, mũ, logarit. + Bài tập tổng hợp – p1. + Bài tập tổng hợp – p2 . + Bài tập tổng hợp – p3 . + Bài tập tổng hợp – p4 . + Bài tập tổng hợp – p5 . + Bài tập tổng hợp – p6 . + Bài tập tổng hợp – p7 . + Bài tập tổng hợp – p8 . + Bài tập tổng hợp – p9 . + Bài tập tổng hợp – p10 . + Bài tập tổng hợp – p11 . + Bài tập tổng hợp – p12 . + Bài tập tổng hợp – p13 . + Bài tập tổng hợp – p14 . + Bài tập tổng hợp – p15 . + Bài tập tổng hợp – p16 . + Bài tập tổng hợp – p17 . + Bài tập tổng hợp – p18 . + Bài tập tổng hợp – p19 . + Bài tập tổng hợp – p20.
32 bài toán phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Giải tích chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số: + Cho phương trình 4 10 2 16 3 0 x x x m với m là tham số thực. Có bao nhiêu số nguyên m để phương trình có hai nghiệm thực phân biệt? + Gọi S là tập hợp nghiệm nguyên của bất phương trình 2 2 2 2 2 log 2 2 log 2 log x mx mx x. Có bao nhiêu giá trị nguyên của tham số m để tập hợp S có đúng 8 phần tử? + Cho hàm số bậc 4 có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m và m 2021 2021 để phương trình 3 2 log f x x f x mx mx f x mx có hai nghiệm phân biệt dương? + Có bao nhiêu giá trị nguyên của tham số a thuộc 20 20 để bất phương trình 2 3 3 3 log log 1 0 x a x a có không quá 20 nghiệm nguyên? + Cho phương trình 3 2020 log 2021 x a x với a là số thực dương. Biết tích các nghiệm của phương trình là 32. Mệnh đề nào sau đây là đúng?
Phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT - BPT mũ và lôgarit
Tài liệu gồm 45 trang, được tổng hợp bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp đánh giá và sử dụng tính đơn điệu của hàm số để giải phương trình và bất phương trình mũ và lôgarit, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT – BPT mũ và lôgarit: + THPT GIA LỘC – HẢI DƯƠNG NĂM 2018 – 2019 LẦN 02: Cho hai số thực a b thỏa mãn 100 40 16 4 log log log12 a b a b. Giá trị của a b bằng? + THPT CHUYÊN BẮC GIANG NĂM 2018 – 2019 LẦN 01: Phương trình 2 3 5 6 2 5 x x x có một nghiệm dạng loga x b b với ab là các số nguyên dương thuộc khoảng 1 7. Khi đó a b 2 bằng? + THPT YÊN ĐỊNH – THANH HÓA 2018 2019 LẦN 2: Cho xy là hai số thực không âm thỏa mãn 2 2 2 1 2 1 log 1 y x x y x. Giá trị nhỏ nhất của biểu thức 2 1 2 4 2 1 x P e x y là? + THPT CHUYÊN THÁI BÌNH NĂM 2018 – 2019 LẦN 04: Cho các số thực x y với x 0 thỏa mãn e e e e 3 1 1 3 1 1 1 3 x y xy xy x y x y y. Gọi m là giá trị nhỏ nhất của biểu thức T x y 2 1. Mệnh đề nào sau đây đúng? + THPT CHUYÊN VĨNH PHÚC LẦN 02 NĂM 2018 – 2019: Biết rằng phương trình e e 2cos x x ax a là tham số có 3 nghiệm thực phân biệt. Hỏi phương trình e e 2cos 4 x x ax có bao nhiêu nghiệm thực phân biệt?