Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình mũ không chứa tham số

Tài liệu gồm 23 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình mũ không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP HÀM SỐ: Tính chất 1: Nếu hàm số y fx liên tục và luôn đồng biến (hoặc luôn nghịch biến) trên a b thì phương trình fx k có không quá một nghiệm trên a b. Tính chất 2: Nếu hàm số y fx liên tục và luôn đồng biến (hoặc luôn nghịch biến); hàm số y gx liên tục và luôn nghịch biến (hoặc luôn đồng biến) trên a b thì phương trình: f x gx có không quá một nghiệm trên a b. Tính chất 3: Nếu y fx đồng biến hoặc nghịch biến trên a b thì fu fv u v. Tính chất 4: Nếu n f x x ba hoặc n f x x ba thì phương trình f x 0 có nhiều nhất n nghiệm x ∈ (a;b). Tính chất 5: Cho hàm số y fx có đạo hàm đến cấp k liên tục trên a b. Nếu phương trình 0 k f x có đúng m nghiệm thì phương trình 1 0 k f x có nhiều nhất là m + 1 nghiệm. PHƯƠNG PHÁP ĐÁNH GIÁ: Quy tắc 1. Giải phương trình f x gx. Xác định 0 x x là một nghiệm của phương trình. Chứng minh với mọi 0 0 x x thì phương trình vô nghiệm. Kết luận 0 x x là nghiệm duy nhất. Quy tắc 2. Giải phương trình f x gx. Xét trên tập xác định D ta có fx m x D f x m gx x D gx m x D Phương trình thỏa mãn khi f x gx m Hoặc đánh giá trực tiếp f x gx. Từ đó tìm dấu xảy ra. Quy tắc 3. Sử dụng tính chất của hàm số lượng giác. Ta có: sin cos Điều kiện để hàm số lượng giác a xb x c cos sin có nghiệm là 222 abc Giá trị lượng giác của góc (cung) có liên quan đặc biệt. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM ĐẶC TRƯNG (KHÔNG CHỨA THAM SỐ) Nếu hàm số y fx đơn điệu trên K thì với mọi uv K ta có fu fv u v. Nếu hàm số y fx đơn điệu trên K thì trên K phương trình f x 0 có tối đa một nghiệm. Phương trình fu fv: Bước 1: Biến đổi phương trình về dạng fu fv với uv K trong đó y ft là hàm số đơn điệu trên K. Bước 2: Khảo sát hàm số y ft để đưa ra tính đơn điệu của hàm số y ft trên K. Bước 3: Kết luận fu fv u v. Phương trình f u 0. Bước 1: Biến đổi phương trình về dạng f u 0 với u K trong đó y ft là hàm số đơn điệu trên K. Bước 2: Khảo sát hàm số y ft để đưa ra tính đơn điệu của hàm số y ft trên K. Bước 3: Tìm giá trị 0 u sao cho f u 0 0. Bước 3: Kết luận phương trình 0 fu u u. GIẢI PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) Phương pháp đặt ẩn phụ không hoàn toàn là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. Phương pháp này thường được sử dụng đối với những phương trình khi lựa chọn ẩn phụ cho một biểu thức thì các biểu thức còn lại không biểu diễn được triệt để qua ẩn phụ đó hoặc nếu biểu diễn được thì công thức biểu diễn lại quá phức tạp. Sau khi biểu diễn ta thường được phương trình bậc hai theo ẩn phụ (hoặc vẫn theo ẩn x) có biệt số ∆ là một số chính phương. Tìm mối liên hệ giữa ẩn phụ và x sau đó thế trở lại để tìm x.

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải toán cực trị mũ - logarit
Tài liệu (ebook) gồm 229 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học: Nguyễn Minh Tuấn, Nguyễn Mai Hoàng Anh, hướng dẫn phương pháp giải toán cực trị mũ – logarit, đây là dạng toán ở mức độ vận dụng – vận dụng cao, thường xuất hiện trong các đề thi trắc nghiệm môn Toán 12 và đề thi tốt nghiệp THPT môn Toán. Mục lục tài liệu phương pháp giải toán cực trị mũ – logarit: Chương 1 . Các kỹ thuật đánh giá cơ bản. I. Các kiến thức cơ bản. II. Các dạng toán cực trị mũ – logarit. 1. Kỹ thuật rút thế, đánh giá điều kiện đưa về hàm một biến số. 2. Kỹ thuật “hàm đặc trưng”. 3. Các bài toán liên quan tới định lý Viet. 4. Các bài toán đưa về đánh giá biến logb a. Chương 2 . Các bài toán chứa tham số. [ads] Chương 3 . Các kỹ thuật đánh giá nâng cao. 1. Sử dụng phương pháp đánh giá bất đẳng thức. 2. Điều kiện cần và đủ. 3. Kỹ thuật đánh giá miền giá nghiệm. Chương 4 . Các bài toán về dãy số. Chương 5 . Phương trình nghiệm nguyên. Tài liệu tham khảo. Xem thêm : Chinh phục các bài toán cực trị mũ và logarit – Nguyễn Minh Tuấn
Phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ - logarit - Hoàng Thanh Phong
Tài liệu gồm 41 trang, được biên soạn bởi thầy giáo Hoàng Thanh Phong, hướng dẫn phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit (có kết hợp tư duy, mẹo giải nhanh và máy tính Casio), đây là lớp bài toán vận dụng – vận dụng cao (VD – VDC) / nâng cao / khó, nhiều khả năng sẽ xuất hiện trong đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn tài liệu phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit – Hoàng Thanh Phong: + Có bao nhiêu cặp số nguyên (x;y) thỏa mãn 1 ≤ x ≤ 2020 và x + x^2 – 9^y = 3^y. + Có bao nhiêu giá trị nguyên dương của tham số m nhỏ hơn 2018 để phương trình log2 (m + √(m + 2^x)) = 2x có nghiệm thực? + Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn biểu thức sau log4 (x + y + 3) = log5 (x^2 + y^2 + 2x + 4y + 5)? Xem thêm : Phương pháp hàm số đặc trưng – Nguyễn Văn Rin
Bài toán min - max liên quan hàm số mũ - logarit nhiều biến - Đặng Việt Đông
Tài liệu gồm 51 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển chọn và hướng dẫn giải 96 bài toán min – max (giá trị nhỏ nhất – giá trị lớn nhất / GTNN – GTLN) liên quan đến hàm số mũ, hàm số logarit nhiều biến số, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT 2020 môn Toán. Dạng toán 1. Áp dụng đánh giá, áp dụng bất đẳng thức. Dạng toán 2. Áp dụng pháp hàm số, hàm đặc trưng. + Áp dụng hàm số. + Áp dụng hàm đặc trưng. Dạng toán 3. Áp dụng hình học giải tích.
160 câu vận dụng cao mũ - logarit ôn thi THPT môn Toán
Tài liệu gồm 15 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) mũ – logarit có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao mũ – logarit ôn thi THPT môn Toán: + Cho phương trình m ln2 (x + 1) − (x + 2 − m) ln(x + 1) − x − 2 = 0 (1). Tập tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a; +∞). Khi đó a thuộc khoảng? + Cho phương trình e m cos x−sin x − e 2(1−sin x) = 2 − sin x − m cos x với m là tham số thực. Gọi S là tập tất cả các giá trị của m để phương trình có nghiệm. Khi đó S có dạng (−∞; a] ∪ [b; +∞). Tính T = 10a + 20. [ads] + Do có nhiều cố gắng trong học kì I năm học lớp 12, Hoa được bố mẹ cho chọn một phần thưởng dưới 5 triệu đồng. Nhưng Hoa muốn mua một cái laptop 10 triệu đồng nên bố mẹ đã cho Hoa 5 triệu đồng gửi vào ngân hàng (vào 1/1/2019) với lãi suất 1% trên tháng đồng thời ngày đầu tiên mỗi tháng (bắt đầu từ ngày 1/2/2019) bố mẹ sẽ cho Hoa 300000 đồng và cũng gửi tiền vào ngân hàng với lãi suất 1% trên tháng. Biết hàng tháng Hoa không rút lãi và tiền lãi được cộng vào tiền vốn cho tháng sau chỉ rút vốn vào cuối tháng mới được tính lãi của tháng ấy. Hỏi ngày nào trong các ngày dưới đây là ngày gần nhất với ngày 1/2/2019 mà bạn Hoa có đủ tiền để mua laptop?