Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Đề khảo sát Toán lớp 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ Hà Nội Chúng tôi xin trân trọng giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán vòng 1 năm học 2023 - 2024 tại trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Một số câu hỏi trích dẫn từ đề khảo sát bao gồm: Cho số tự nhiên n lớn hơn 1, biết n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng n chia hết cho 5. Trong tam giác ABC vuông tại A (AB < AC), đường cao AH cắt BC tại H, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. Cần chứng minh các quan hệ đồng dạng và vuông góc trong tam giác. Các số nguyên dương từ 1 đến 100 được chia thành 25 tập hợp sao cho mỗi tập hợp chứa ít nhất một phần tử. Nhiệm vụ là chứng minh tồn tại ba số nguyên dương thuộc cùng một tập hợp sao cho chúng tạo thành độ dài ba cạnh của một tam giác. Hãy chuẩn bị kỹ lưỡng và tự tin tham gia đề khảo sát để kiểm tra kiến thức và ôn tập cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi Toán lớp 9 năm 2023-2024 cấp huyện Đề thi Học sinh giỏi Toán lớp 9 năm 2023-2024 cấp huyện Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến quý vị đề thi chọn Học sinh giỏi lớp 9 môn Toán cấp huyện năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm 5 bài toán tự luận trên 1 trang, thời gian làm bài là 120 phút (không kể thời gian giao đề). Trích dẫn một số bài toán trong đề: Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 - 3y2 - 2xy - 2x + 14y = 11. Chứng minh rằng nếu n là số nguyên dương thỏa mãn 12n2 + 1 là số nguyên, thì 212n2 + 1 + 2 là số chính phương. Trong tam giác ABC, xác định vị trí của đường thẳng d đi qua I sao cho diện tích tam giác AMN đạt giá trị nhỏ nhất. Đề thi Học sinh giỏi Toán lớp 9 năm 2023-2024 cung cấp các bài toán thú vị và thách thức, giúp các em ôn tập và củng cố kiến thức Toán một cách nhanh nhẹn và sáng tạo. Chúc quý thầy cô và các em học sinh thành công trong việc giải quyết những bài toán khó khăn này!
Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023 2024 phòng GD ĐT Tứ Kỳ Hải Dương
Nội dung Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023 2024 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023-2024 phòng GD ĐT Tứ Kỳ Hải Dương Đề học sinh giỏi lớp 9 môn Toán vòng 1 năm 2023-2024 phòng GD ĐT Tứ Kỳ Hải Dương Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 tại phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn từ Đề học sinh giỏi Toán lớp 9 vòng 1 năm 2023-2024 phòng GD&ĐT Tứ Kỳ - Hải Dương: Cho các số thực a, b không âm thỏa mãn điều kiện 2a + 2b + ab = 4. Hãy tính giá trị của biểu thức P. Cho a, b, c là các số nguyên thỏa mãn a + b + c = c3 - 7c. Chứng minh rằng: a3 + b3 + c3 chia hết cho 6. Cho tam giác ABC vuông tại A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Cần chứng minh các phát biểu sau: a) AE.EB + AF.FC = AH2 và BC.cos³B = BE. b) BE.CH + CF.BH = AH.BC. c) Gọi M là trung điểm của BC, từ A kẻ đường thẳng d vuông góc với AM tại A. Từ B kẻ tia Bx vuông góc với BC cắt d tại P. Chứng minh PC đi qua trung điểm của AH. Đây là một bài thi đầy thách thức, đòi hỏi sự sáng tạo, logic và kiến thức vững chắc từ các em học sinh lớp 9. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức Toán của mình. Chúc các em thành công!
Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội Chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu với các bạn đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023 – 2024 tại trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày thứ Năm, 07 tháng 09 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Cho x và y là các số nguyên dương thỏa mãn x^3 + y và x + y^3 cùng chia hết cho x^2 + y^2. Chứng minh rằng 2x + 2y là số chính phương. Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử? Chúc các em học sinh thực sự tự tin và thành công trong kỳ thi sắp tới. Hãy nỗ lực hết mình và chinh phục mọi thách thức trước mắt. Hy vọng rằng đây sẽ là cơ hội để các bạn khẳng định khả năng và tài năng của mình. Cố gắng lên, các bạn ạ!
Đề học sinh giỏi lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Tứ Kỳ Hải Dương
Nội dung Đề học sinh giỏi lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 vòng 2 năm 2022 - 2023 phòng GD&ĐT Tứ Kỳ - Hải Dương Đề học sinh giỏi Toán lớp 9 vòng 2 năm 2022 - 2023 phòng GD&ĐT Tứ Kỳ - Hải Dương Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: 1. Cho hai số nguyên dương x, y thỏa mãn: \(2x^2 + 2y^2 = xy + x + y + 1\). Chứng minh rằng x và y là hai số chính phương liên tiếp. Tìm các cặp số tự nhiên x, y thỏa mãn \(6x^2 + y^2 = yx + 30\). 2. Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H. Trên đoạn thẳng AD lấy điểm M sao cho ∠BMC = 90°. Gọi S, S', S'' lần lượt là diện tích các tam giác BAC, BMC, BHC. a) Chứng minh rằng: S = S' + S''. b) Gọi K, P lần lượt là hình chiếu của D trên BE, CF. Chứng minh rằng KP // EF. 3. Trên các cạnh BC, CA, AB của tam giác ABC lần lượt lấy các điểm M, N, P. Đặt S, S', S'' lần lượt là diện tích các tam giác ANP, BMP, CMN, ABC. Chứng minh rằng: \(3S = S' + 2S'' + 64\). Đề thi sẽ là cơ hội thử thách khả năng giải quyết bài toán và logic của các em học sinh. Hy vọng các em sẽ cố gắng hết mình để giải quyết các câu hỏi thú vị này. Chúc các em thành công!