Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 - 2019 sở GDĐT Gia Lai

Ngày 07 tháng 03 năm 2019, sở Giáo dục và Đào tạo Gia Lai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, các em đạt giải trong kỳ thi này sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh Gia Lai. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Gia Lai : + Một đoàn học sinh đi tham quan quảng trường Đại Đoàn Kết tỉnh Gia Lai. Nếu mỗi ô tô chở 12 người thì thừa 1 người. Nếu bớt đi 1 ô tô thì số học sinh của đoàn được chia đều cho các ô tô còn lại. Hỏi có bao nhiêu học sinh đi tham quan và có bao nhiêu ô tô? Biết rằng mỗi ô tô chở không quá 16 người. [ads] + Trong kỳ thi chọn học sinh giỏi THCS cấp Tỉnh, đoàn học sinh huyện A có 17 học sinh dự thi. Mỗi thí sinh có số báo danh là một số tự nhiên trong khoảng từ 1 đến 907. Chứng minh rằng có thể chọn ra 9 học sinh trong đoàn có tổng các số báo danh chia hết cho 9. + Một cây nến hình lăng trụ đứng đáy lục giác đều có chiều cao và độ dài cạnh đáy lần lượt là 20cm và 1cm . Người ta xếp cây nến trên vào trong một cái hộp có dạng hình hộp chữ nhật sao cho cây nến nằm khít trong hộp. Tính thể tích cái hộp.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Thanh Ba - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Ba, tỉnh Phú Thọ; đề thi gồm 02 trang với 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và biểu điểm. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Thanh Ba – Phú Thọ : + Bạn Trang có tầm mắt cao 1,52m đứng gần một tòa nhà cao tầng thì thấy đỉnh của tòa nhà với góc nhìn so với phương nằm ngang là 30°. Trang đi về phía tòa nhà 50m thì nhìn thấy đỉnh của tòa nhà với góc nhìn so với phương nằm ngang là 60°. Hỏi chiều cao của tòa nhà là bao nhiêu? (làm tròn kết quả đến chữ số thập phân thứ hai). + Cho hình hộp chữ nhật có diện tích xung quanh 2 80 dm chiều cao bằng 8 dm. Để hình hộp chữ nhật so thể tích lớn nhất thì các kích thước của đáy bể là? + Một lọ thuốc hình trụ được đặt khít trong một hộp giấy hình chữ nhật. Hỏi thể tích của hộp thuốc bằng bao nhiêu phần trăm thể tích của hộp giấy? (lấy π ≈ 3,14).
Đề thi HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Đô Lương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đô Lương, tỉnh Nghệ An. Trích dẫn Đề thi HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Đô Lương – Nghệ An : + Cho T = 4n + 1 với n là số tự nhiên lẻ lớn hơn 1. Chứng minh giá trị của T là hợp số. + Cho tam giác ABC vuông tại A đường cao AH. Gọi N là trung điểm của đoạn thẳng BC. Từ N vẽ đường thẳng song song với AB cắt AC tại E. Từ C vẽ đường thẳng song song với AH cắt đường thẳng NE tại K. BK cắt AH tại M. a) Chứng minh BC2 = 4.NE.NK và M là trung điểm của đoạn thẳng AH. b) Các đường phân giác của tam giác AHE cắt nhau tại I, các đường phân giác của tam giác CHE cắt nhau tại Q. đường thẳng IQ cắt các đường thẳng AH và CH thứ tự tại P và F. Chứng minh AH.HC = 2.HP.HF.
Đề thi Olympic Toán 9 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic các trường THCS hướng đến kỳ thi học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 9 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho A là số nguyên dương và phương trình nghiệm nguyên ax by c với các hệ số nguyên a b c thỏa mãn a b nguyên tố cùng nhau a b A. Chứng minh số nghiệm nguyên x y thỏa mãn điều kiện x A y A của phương trình đã cho không vượt quá 3A b. + Gọi O là giao điểm ba đường phân giác trong của tam giác ABC. Đường thẳng qua O và vuông góc với CO cắt CA tại M cắt CB tại N. Chứng minh rằng: a) Tam giác AOM đồng dạng với tam giác OBN. b) 2 1 AM BN OC AC BC AC BC. + Cạnh BC của tam giác ABC tiếp xúc với đường tròn nội tiếp O của tam giác đó tại điểm D. Chứng minh rằng tâm O của đường tròn này nằm trên đường thẳng đi qua trung điểm của các đoạn thẳng BC và AD.
Đề thi HSG Toán 9 vòng 3 năm 2023 - 2024 trường THCS Tân Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 vòng 3 năm học 2023 – 2024 trường THCS Tân Thành, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG Toán 9 vòng 3 năm 2023 – 2024 trường THCS Tân Thành – Nghệ An : + Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. b) Chứng minh BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng: MP MQ. + Trong một buổi gặp mặt có 294 người tham gia, những người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu cái bắt tay. + Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.