Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp lý thuyết tọa độ không gian Oxyz - Lê Minh Tâm

Tài liệu gồm 226 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Hình học chương 3. Chủ đề 01 . TỌA ĐỘ. A. Lý thuyết chung. 1. Véctơ 4. 2. Điểm 5. 3. Hình chiếu vuông góc 8. 4. Đối xứng 8. 5. Góc 9. 6. Khoảng cách 9. B. Các dạng bài tập. + Dạng 1.1. Tìm tọa độ điểm thỏa điều kiện cho trước 10. + Dạng 1.2. Tìm tọa độ điểm đặc biệt 12. + Dạng 1.3. Tìm tọa độ vectơ thỏa điều kiện cho trước 17. + Dạng 1.4. Liên quan độ dài 18. + Dạng 1.5. Sự cùng phương 20. + Dạng 1.6. Sự đồng phẳng 21. + Dạng 1.7. Ứng dụng tích có hướng 23. + Dạng 1.8. Liên quan góc 26. + Dạng 1.9. Tâm tỷ cự 28. + Dạng 1.10. Tọa độ hóa 30. + Cách chọn hệ tọa độ một số hình không gian 31. Chủ đề 02 . PHƯƠNG TRÌNH MẶT CẦU. A. Lý thuyết chung. 1. Phương trình 37. 2. Vị trí tương đối 37. B. Các dạng bài tập. + Dạng 2.1. Xác định tâm – bán kính – nhận biết phương trình mặt cầu 39. + Dạng 2.2. Phương trình mặt cầu có tâm và đi qua một điểm 41. + Dạng 2.3. Phương trình mặt cầu nhận hai điểm làm đường kính 42. + Dạng 2.4. Phương trình mặt cầu qua 4 điểm không đồng phẳng 43. + Dạng 2.5. Phương trình mặt cầu tâm I thuộc (P) và qua ba điểm 44. + Dạng 2.6. Phương trình mặt cầu tâm I thuộc d và qua hai điểm 45. + Dạng 2.7. Phương trình mặt cầu tiếp xúc mặt phẳng – đường thẳng 46. + Dạng 2.8. Phương trình mặt cầu cắt mặt phẳng – đường thẳng 48. Chủ đề 03 . PHƯƠNG TRÌNH MẶT PHẲNG. A. Lý thuyết chung. 1. Phương trình 50. 2. Vị trí tương đối hai mặt phẳng 50. B. Các dạng bài tập. + Dạng 3.1. Xác định vectơ pháp tuyến 51. + Dạng 3.2. Phương trình mặt phẳng đi qua ba điểm đồng phẳng 52. + Dạng 3.3. Phương trình mặt phẳng đi qua hai điểm và chứa vectơ 54. + Dạng 3.4. Phương trình mặt phẳng trung trực của đoạn thẳng 55. + Dạng 3.5. Phương trình mặt phẳng qua 2 điểm, vuông góc mặt phẳng 56. + Dạng 3.6. Phương trình mặt phẳng qua điểm, vuông góc 2 mặt phẳng 57. + Dạng 3.7. Phương trình mặt phẳng song song mặt phẳng khác 58. + Dạng 3.8. Phương trình mặt phẳng qua điểm, song song/vuông góc đường thẳng 60. + Dạng 3.9. Phương trình mặt phẳng qua điểm, chứa đường thẳng 61. + Dạng 3.10. Phương trình mặt phẳng chứa d, d’ và d cắt d’ 62. + Dạng 3.11. Phương trình mặt phẳng chứa d, d’ và d song song d’ 63. + Dạng 3.12. Phương trình mặt phẳng chứa d và song song d’ 64. + Dạng 3.13. Phương trình mặt phẳng chứa d và vuông góc mặt khác 65. + Dạng 3.14. Phương trình mặt phẳng cách đều 2 đường thẳng 66. + Dạng 3.15. Phương trình mặt phẳng liên quan mặt cầu 67. Chủ đề 04 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. A. Lý thuyết chung. 1. Phương trình 69. 2. Vị trí tương đối hai đường thẳng 69. 3. Vị trí tương đối giữa đường thẳng và mặt phẳng 70. 4. Vị trí tương đối giữa đường thẳng và mặt cầu 70. 5. Khoảng cách liên quan đến đường thẳng 70. B. Các dạng bài tập. + Dạng 4.1. Xác định vectơ chỉ phương 71. + Dạng 4.2. Phương trình đường thẳng qua điểm & có sẵn VTCP 72. + Dạng 4.3. Phương trình đường thẳng qua hai điểm 73. + Dạng 4.4. Phương trình đường thẳng là giao tuyến hai mặt phẳng 74. + Dạng 4.5. Phương trình đường thẳng qua điểm, song song d 76. + Dạng 4.6. Phương trình đường thẳng qua điểm, vuông góc mặt 77. + Dạng 4.7. Phương trình đường thẳng qua điểm, vuông góc d, d’ 78. + Dạng 4.8. Phương trình đường thẳng qua điểm, song song vuông góc d 79. + Dạng 4.9. Phương trình đường thẳng qua điểm, vuông góc d, cắt d’ 80. + Dạng 4.10. Phương trình đường thẳng qua điểm, vuông góc & cắt d 82. + Dạng 4.11. Phương trình đường thẳng qua điểm, song song & cắt d 83. + Dạng 4.12. Phương trình đường thẳng qua điểm & cắt d1, d2 84. + Dạng 4.13. Phương trình đường thẳng nằm trong & cắt d1 d2 86. + Dạng 4.14. Phương trình đường thẳng nằm trong & vuông góc d 87. + Dạng 4.15. Phương trình đường thẳng qua điểm và // d’ cắt d1, d2 89. + Dạng 4.16. Phương trình đường thẳng là đường vuông góc chung 90. + Dạng 4.17. Phương trình đường thẳng là đường phân giác 91. + Dạng 4.18. Liên quan hình chiếu 92. + Dạng 4.19. Liên quan đối xứng 95. Chủ đề 05 . VỊ TRÍ TƯƠNG ĐỐI. A. Lý thuyết chung. 1. Điểm và mặt cầu, mặt phẳng và đường thẳng 97. 2. Mặt cầu và mặt phẳng, đường thẳng 98. 3. Mặt phẳng và mặt phẳng, đường thẳng 98. 4. Đường thẳng và đường thẳng 99. B. Các dạng bài tập. + Dạng 5.1. Vị trí tương đối với mặt cầu 100. + Dạng 5.2. Vị trí tương đối với mặt phẳng 102. + Dạng 5.3. Vị trí tương đối với đường thẳng 104. + Dạng 5.4. Góc 107. + Dạng 5.5. Khoảng cách 109.

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Hệ trục tọa độ trong không gian
Tài liệu gồm 31 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hệ trục tọa độ trong không gian; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hệ trục tọa độ trong không gian: Vấn đề 1. Hệ trục tọa độ trong không gian. Vấn đề 2. Phương trình mặt cầu. + Bài toán 1. Xác định tâm và bán kính. + Bài toán 2. Viết phương trình mặt cầu.
Bài toán phương trình mặt cầu - Diệp Tuân
Tài liệu gồm 81 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình mặt cầu trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình mặt cầu – Diệp Tuân: Dạng 1 . Xác định tâm và bán kính mặt cầu cho trước. Dạng 2 . Viết phương trình mặt cầu thỏa mãn điều kiện cho trước. + Bài toán 1. Phương trình mặt cầu tâm I và đi qua điểm A. + Bài toán 2. Phương trình mặt cầu đường kính AB. + Bài toán 3. Mặt cầu tâm I(a;b;c) tiếp xúc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 4. Mặt cầu ngoại tiếp tứ diện ABCD (đi qua bốn điểm A, B, C, D). + Bài toán 5. Mặt cầu đi qua A, B, C và tâm I thuộc mặt phẳng (P): Ax + By + Cz + D = 0. + Bài toán 6. Mặt cầu (S) đi qua hai điểm A, B và tâm thuộc đường thẳng d. + Bài toán 7. Mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B phân biệt. + Bài toán 8. Mặt cầu (S) có tâm I và tiếp xúc với mặt cầu (T) cho trước. + Bài toán 9. Mặt cầu (S’) đối xứng với mặt cầu (S) qua mặt phẳng (P). + Bài toán 10. Mặt cầu (S’) đối xứng mặt cầu (S) qua đường thẳng d. + Bài toán 11. Tìm tiếp điểm H là hình chiếu của tâm I trên mặt phẳng (P). + Bài toán 12. Tìm bán kính r và tâm H đường tròn giao tuyến của mặt phẳng và mặt cầu. + Bài toán 13. Tập hợp điểm và bài toán tiếp tuyến.
Bài toán phương trình đường thẳng - Diệp Tuân
Tài liệu gồm 132 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình đường thẳng trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình đường thẳng – Diệp Tuân: Dạng 1 . Viết phương trình đường thẳng. 1.Phương pháp chung. 2. Bài tập minh họa. 3. Một số kỹ thuật lập phương trình đường thẳng đặc biệt. + Kỹ thuật điểm M thuộc đường thẳng d. + Kỹ thuật lập hai mặt phẳng cắt nhau theo giao tuyến là đường thẳng d. Dạng 2 . Hình chiếu của điểm, của đường thẳng lên đường thẳng, mặt phẳng.  + Bài toán 1. Tìm hình chiếu của điểm A(xA;yA;zA) xuống đường thẳng d: x = x0 + at; y = y0 + bt; z = z0 + ct, suy ra điểm đối xứng A’ của A qua d. + Bài toán 2. Tìm hình chiếu của đường thẳng d: x = x0 + at; y = y0 + bt; z = z0 + ct xuống mặt phẳng (P): Ax + By + Cz + D = 0. Dạng 3 . Viết phương tình đường phân giác trong và ngoài của tam giác, của hai đường thẳng. + Bài toán 1. Viết phương tình đường phân giác trong và ngoài của tam giác ABC. + Bài toán 2. Viết phương tình đường phân giác góc nhọn và góc tù của hai đường thẳng d1 và d2 cắt nhau tại điểm A. Dạng 4 . Một số bài toán liên quan đến góc, khoảng cách và tương giao. + Vị trí tương đối của đường thẳng với mặt phẳng. + Giao điểm giữa đường thẳng và mặt phẳng. + Góc giữa hai đường thẳng. + Góc giữa đường thẳng với mặt phẳng. + Khoảng cách từ điểm đến đường thẳng. + Khoảng cách của hai đường thẳng chéo nhau. + Khoảng cách giữa đường thẳng và mặt phẳng song song.
Bài toán phương trình mặt phẳng - Diệp Tuân
Tài liệu gồm 101 trang, được biên soạn bởi thầy Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình mặt phẳng trong chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian. Khái quát nội dung tài liệu bài toán phương trình mặt phẳng – Diệp Tuân: Dạng 1 . Lập phương trình mặt phẳng khi biết một điểm và một véc tơ pháp tuyến. + Bài toán 1. Phương trình mặt phẳng (P) đi qua điểm M song song với mặt phẳng (α) cho trước. + Bài toán 2. Phương trình mặt phẳng (P) đi qua điểm M vuông góc với hai mặt phẳng (Q) và mặt phẳng (R). + Bài toán 3. Phương trình mặt phẳng (P) đi qua hai điểm A, B và vuông góc với mặt phẳng (Q). + Bài toán 4. Viết phương trình mặt phẳng (P) đi qua ba điểm A, B, C cho trước. + Bài toán 5. Viết phương trình mặt phẳng (P) đi qua giao tuyến của hai mặt phẳng (Q), (R) và thỏa mãn các giả thiết đi qua điểm M hoặc song song với mặt phẳng hoặc vuông góc với mặt phẳng. + Bài toán 6. Viết phương trình mặt phẳng (P) đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) thỏa mãn điều kiện cho trước. [ads] Dạng 2 . Lập phương trình mặt phẳng (α) khi biết một điểm M, khoảng cách, góc và chưa có véc tơ pháp tuyến. Dạng 3 . Vị trí tương đối của hai mặt phẳng, khoảng cách và góc của hai mặt phẳng. Dạng 4 . Tìm hình chiếu của điểm M xuống mặt phẳng (α), tìm điểm đối xứng M’. + Bài toán 1. Tìm hình chiếu của điểm M xuống mặt phẳng (P). + Bài toán 2. Tìm điểm đối xứng M’ của điểm M qua mặt phẳng (P). Dạng 5 . Bài toán cực trị (giá trị lớn nhất và nhỏ nhất). + Bài toán 1. Tìm điểm M sao cho tổng hoặc hiệu các véc tơ đạt giá trị lớn nhất, nhỏ nhất. + Bài toán 2. Bài toán tìm điểm M sao độ dài các vec tơ đạt giá trị lớn nhất, nhỏ nhất. + Bài toán 3. Tìm mặt phẳng (P) sao cho khoảng cách từ một điểm đến (P) là nhỏ nhất.