Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm

Nội dung Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Bản PDF - Nội dung bài viết Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệmPHẦN I: TÓM TẮT LÝ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Liệt kê các kết quả và số phần tử của tập hợpDạng 2: Nhận biết sự kiện liên quan đến phép thửDạng 3: Tính xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm là một tài liệu gồm 8 trang, được thiết kế để tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập chuyên đề xác suất thực nghiệm, nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán. PHẦN I: TÓM TẮT LÝ THUYẾT Hướng dẫn tóm tắt lý thuyết giúp học sinh lớp 6 nắm vững kiến thức về xác suất thực nghiệm. Tài liệu đưa ra giải thích và định nghĩa các khái niệm cơ bản như: phép thử, kết quả, tập hợp các kết quả có thể xảy ra, sự kiện, xác suất thực nghiệm. Đồng thời, nó cũng trình bày công thức tính xác suất thực nghiệm để giúp học sinh hiểu rõ cách tính toán. PHẦN II: CÁC DẠNG BÀI Dạng 1: Liệt kê các kết quả và số phần tử của tập hợp Dạng bài này yêu cầu liệt kê tất cả các kết quả có thể xảy ra trong phép thử và đếm số phần tử của tập hợp đó. Liệt kê các kết quả có thể xảy ra là quá trình ghi lại các khả năng xảy ra trong phép thử. Tập hợp tất cả kết quả có thể xảy ra được biểu diễn dưới dạng Xa1a2a3...an. Số phần tử của tập hợp có thể được đếm hoặc ước tính bằng một quy tắc cụ thể. Dạng 2: Nhận biết sự kiện liên quan đến phép thử Trường hợp này, các sự kiện liên quan tới phép thử được mô tả bởi một tập con n(A) của tập hợp kết quả có thể xảy ra trong phép thử. Sự kiện chắc chắn là sự kiện luôn xảy ra khi thực hiện phép thử. Sự kiện không thể là sự kiện không bao giờ xảy ra khi phép thử được thực hiện. Sự kiện có thể là sự kiện cũng có thể xảy ra khi phép thử được thực hiện. Dạng 3: Tính xác suất thực nghiệm Trong dạng bài này, cần tính xác suất thực nghiệm bằng cách lặp lại một hoạt động n lần. Gọi n(A) là số lần sự kiện A xảy ra trong n lần thực hiện hoạt động đó. Công thức tính xác suất thực nghiệm là p(A) = số lần sự kiện A xảy ra / tổng số lần thực hiện hoạt động. Đây được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện. Đây là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 nắm vững và áp dụng kiến thức về xác suất thực nghiệm. Tài liệu có cấu trúc rõ ràng, đầy đủ và dễ hiểu, giúp học sinh rèn luyện kỹ năng giải các dạng toán liên quan đến xác suất thực nghiệm. Để tải về tài liệu, xin vui lòng nhấp vào đường link sau: http://example.com/file

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm tỉ số và tỉ số phần trăm
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề một số bài toán về tỉ số và tỉ số phần trăm, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Tỉ số của hai số: Thương trong phép chia số a cho số b b 0 gọi là tỉ số của a và b. Tỉ số của a và b kí hiệu là a : b (cũng kí hiệu là a / b). Chú ý: + Phân số a b thì cả a và b phải là các số nguyên (b khác 0). + Tỉ số a b thì cả a và b có thể là các số nguyên, phân số, hỗn số, số thập phân. + Ta thường dùng khái niệm tỉ số khi nói về thương của hai đại lượng cùng loại và cùng đơn vị đo. 2. Tỉ số phần trăm: Ta thường dùng tỉ số dưới dạng tỉ số phần trăm, tức là tỉ số có dạng 100 a kí hiệu a%. Muốn tìm tỉ số phần trăm của hai số a và b, ta nhân a với 100 rồi chia cho b và viết kí hiệu % vào bên phải kết quả tìm được: 100 a b. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm làm tròn và ước lượng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề làm tròn và ước lượng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Làm tròn. Để làm tròn một số thập phân dương đến một hàng nào đấy (gọi là hàng làm tròn), ta làm như sau: – Đối với chữ số làm tròn: + Giữ nguyên nếu chữ số ngay bên phải nhỏ hơn 5. + Tăng một đơn vị nếu chữ số ngay bên phải lớn hơn hay bằng 5. – Đối với các chữ số sau hàng làm tròn: + Bỏ đi nếu ở phần thập phân. + Thay bởi các chữ số 0 nếu ở phần số nguyên. 2. Ước lượng. – Khi thực hiện một dãy phép tính hoặc khi đo, đếm các sự vật, trong nhiều trường hợp ta không cần tính chính xác kết quả mà chỉ cần ước lượng kết quả, tức là chỉ ra một giá trị gần sát với kết quả chính xác. Có thể ước lượng kết quả bằng 1 trong những cách sau: + Cắt bỏ bớt một hay nhiều chữ số ở phần thập phân của kết quả. + Làm tròn kết quả tới một hàng thích hợp. + Làm tròn các số hạng thừa số, số bị chia, số chia có trong dãy phép tính cần thực hiện. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm tính toán với số thập phân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tính toán với số thập phân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Cộng, trừ hai số thập phân. Để thực hiện các phép tính cộng trừ các số thập phân, ta áp dụng các quy tắc dấu như khi thực hiện các phép tính cộng trừ số nguyên. – Muốn cộng hai số thập phân âm ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả. – Muốn cộng hai số thập phân trái dấu, ta làm như sau: + Nếu số dương lớn hơn hay bằng số đối của số âm thì ta lấy số dương trừ đi số đối của số âm a b b a với 0 a b. + Nếu số dương nhỏ hơn số đối của số âm thì ta lấy sốđối của số âm trừ đi số dương rồi đặt dấu trừ trước kết quả. – Muốn số thập phân a cho số thập phân b ta cộng a với số đối của b. Chú ý: – Tổng của hai số thập phân cùng dấu luôn cùng dấu với hai số thập phân đó. – Khi cộng hai số thập phân trái dấu: + Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương. + Nếu số dương nhỏ hơn số âm thì ta có tổng âm. 2. Nhân, chia hai số thập phân. Muốn nhân hai số thập phân dương có có nhiều chữ số thập phân ta làm như sau: – Bỏ dấu phẩy rồi nhân như hai số tự nhiên. – Đếm xem trong phần thập phân ở cả hai thừa số có tất cả bao nhiêu chữ số rồi dùng dấu phẩy tách ở tích ra bấy nhiêu chữ số từ phải sang trái. – Nhân hai số cùng dấu a b a b với a b 0. – Nhân hai số khác dấu a b a b a b với a b 0. Muốn chia hai số thập phân dương có có nhiều chữ số thập phân ta làm như sau: – Đếm xem có bao nhiêu chữ số ở phần thập phân số thì chuyển dấu phẩy ở số bị chia ở số bị chia sang phải bấy nhiêu chữ số. Nếu thiếu bao nhiêu chữ số thì ta thêm bấy nhiêu chữ số 0. – Bỏ dấu phẩy ở số chia rồi thực hiện phép chia như chia số thập phân cho số tự nhiên. – Chia hai số cùng dấu: a b a b với a b 0. – Nhân hai số khác dấu: a b a b a b với a b 0. 3. Các dạng toán thường gặp. Dạng 1: Thực hiện phép tính. Phương pháp: Sử dụng quy tắc các phép tính để tính. Dạng 2: Tìm x. Phương pháp: Sử dụng quy tắc chuyển vế, tính chât của đẳng thức để tìm. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: THỰC HIỆN PHÉP TÍNH. DẠNG 2: TÌM X.
Tóm tắt lý thuyết và bài tập trắc nghiệm số thập phân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số thập phân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Số thập phân âm. – Phân số thập phân là phân số có mẫu số là lũy thừa của 10. – Các phân số thập phân dương được viết dưới dạng số thập phân dương. – Các phân số thập phân âm được viết dưới dạng số thập phân âm. – Số thập phân gồm hai phần: + Phần số nguyên viết bên trái dấu phẩy. + Phần thập phân viết bên phải dấu phẩy. 2. Số đối của một số thập phân. Hai số thập phân gọi là đối nhau khi chúng biểu diễn hai phân số thập phân đối nhau. 3. So sánh hai số thập phân. Để so sánh hai số thập phân tùy ý ta dùng quy tắc như quy tắc so sánh hai số nguyên: – Nếu hai số thập phân trái dấu, số thập phân dương luôn lớn hơn số thập phân âm. – Trong hai số thập phân âm, số nào có số đối lớn hơn thì số đó nhỏ hơn. Ta cũng có thể so sánh hai số thập phân bằng cách so sánh hai phân số thập phân tương ứng của chúng. B. BÀI TẬP TRẮC NGHIỆM