Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Cho tam giác ABC nhọn có các đường cao AD BE và CF cắt nhau tại H. Qua B kẻ đường thẳng song song vớiCF cắt tia AD tại K. 1) Chứng minh ∆AEF đồng dạng ∆ABC. 2) Chứng minh 2 AB AD AK và 1 HD HE HF AD BE CF. 3) Gọi I là trung điểm BC. Tia HI cắt BK tại N. Chứng minh AN vuông góc EF. + Cho tam giác ABC, M là điểm di chuyển trên đoạn BC. Từ M kẻ MD song song với AC, ME song song với AB (D thuộc AB; E thuộc AC).Xác định vị trí của M để diện tích tứ giác ADME lớn nhất. + Giải bóng đá của một trường THCS có 10 đội tham gia thi đấu vòng tròn một lượt (hai đội bất kỳ đều thi đấu với nhau một trận và phân rõ thắng – thua). Biết rằng đội thứ nhất thắng 1 a trận và thua 1 b trận, đội thứ hai thắng 2 a trận và thua 2 b trận, đội thứ 10 thắng 10 a trận và thua 0 b trận. Chứng minh rằng: 10 a b.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Tam Đảo Vĩnh Phúc
Nội dung Đề thi HSG lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Tam Đảo Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Tam Đảo- Vĩnh Phúc Đề thi HSG Toán lớp 8 năm 2014-2015 phòng GD&ĐT Tam Đảo- Vĩnh Phúc Sytu xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG Toán lớp 8 năm 2014-2015 từ phòng GD&ĐT Tam Đảo- Vĩnh Phúc. Đề thi bao gồm lời giải chi tiết và hướng dẫn chấm điểm các bài toán. Đề thi bắt đầu với câu hỏi về hình vuông ABCD, trong đó AC cắt BD tại O. Đề bài yêu cầu chứng minh một số tính chất của tam giác OEM khi M là điểm trên cạnh BC và AM cắt đường thẳng CD tại N. Tiếp theo là bài toán về biểu thức đại số và tổ hợp số học, một bài toán khác yêu cầu chứng minh rằng trong ba số x, y, z, tồn tại hai số đối nhau khi thỏa mãn điều kiện nhất định. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức Toán lớp 8 một cách linh hoạt và chính xác để giải quyết các bài toán đa dạng. Hy vọng đề thi sẽ là cơ hội tốt để các em rèn luyện và củng cố kiến thức của mình. Chúc quý thầy cô và các em học sinh thành công!
Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG cấp huyện môn Toán năm 2012 - 2013 từ phòng GD&ĐT Việt Yên, Bắc Giang. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi từ đề thi: 1. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD^2 = 1/AM^2 + 1/AN^2. 4. Tìm đa thức f(x) biết rằng: f(x) chia cho x - 2 dư 10, f(x) chia cho x - 2 dư 24, f(x) chia cho x^2 - 4 được thương là -5x và còn dư. 5. Phân tích đa thức x^4 + 2013x^2 + 2012x + 2013 thành nhân tử.