Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 2 (HK2) lớp 10 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh

Nội dung Đề kiểm tra giữa học kì 2 (HK2) lớp 10 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF Thứ Năm ngày 01 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh lớp 10 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. Đề kiểm tra giữa học kỳ 2 Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Bắc Ninh gồm 02 trang với 12 câu trắc nghiệm và 05 câu tự luận, phần trắc nghiệm chiếm 3,0 điểm, phần tự luận chiếm 7,0 điểm, thời gian học sinh làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm tra giữa học kỳ 2 Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học tìm được một chiếc đĩa cổ hình tròn bị vỡ. Các nhà khảo cổ muốn khôi phục hình dạng của chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa như hình vẽ và tiến hành đo đạc được thu được kết quả AB = 4.1 cm, BC = 3.6 cm, AC = 7.3cm. Bán kính của chiếc đĩa này (kết quả làm tròn đến hai chữ số sau dấu phẩy). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A và đường thẳng l. Đường thẳng d đi qua điểm A và vuông góc với l có phương trình tổng quát là? + Bảng xét dấu dưới đây là của nhị thức bậc nhất nào?

Nguồn: sytu.vn

Đọc Sách

Đề giữa kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Đầm Dơi - Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Đầm Dơi, tỉnh Cà Mau.
Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Thầy Hùng có 45m lưới muốn rào một mảnh vườn hình chữ nhật để trồng rau, biết rằng một cạnh là tường. Thầy Hùng chỉ cần rào 3 cạnh còn lại của hình chữ nhật để làm vườn. Có bao nhiêu giá trị nguyên của x (như hình vẽ) để diện tích mảnh vườn không bé hơn 2 100m? + Từ các chữ số 1 2 3 5 7 8 9. Hỏi có bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau được lập từ các chữ số đã cho? + Một cái hộp có 9 viên bi, trong đó có 4 viên bi đỏ, 5 viên bi xanh. Từ cái hộp trên, lấy ra 4 viên bi. Hỏi có bao nhiêu cách chọn 4 viên bi có đủ 2 màu.
Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Hồ Nghinh - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra định kỳ giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Hồ Nghinh, tỉnh Quảng Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Hồ Nghinh – Quảng Nam : + Trong mặt phẳng Oxy cho phương trình chính tắc của parabol là 2 y px 2 với p > 0. Khi đó parabol có tiêu điểm là? + Bảng dưới đây cho biết nồng độ bụi PM 2.5 trong không khí theo thời gian trong ngày 25 3 2021 tại một trạm quan trắc ở Thủ đô Hà Nội. Nồng độ bụi PM 2.5 tại thời điểm 8 giờ là? + Trong mặt phẳng hệ toạ độ Oxy cho đường thẳng ∆ 0 x y. Đường tròn C cắt ∆ tại hai điểm A B sao cho AB 2 6. Các tiếp tuyến của C tại hai điểm A B cắt nhau tại điểm M 0 6. a. Viết phương trình đường thẳng d qua M và vuông góc với ∆. b. Viết phương trình đường tròn C.
Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Đô Lương 3 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi đánh giá giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Đô Lương 3, tỉnh Nghệ An; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Đô Lương 3 – Nghệ An : + Trong mặt phẳng toạ độ Oxy cho điểm A(1; 2) và véctơ n = (3; 4). Viết phương trình tổng quát của đường thẳng d qua A nhận véctơ n = (3; 4) làm véctơ pháp tuyến. + Một cổng công viên có hình dạng là một parabol. Biết khoảng cách hai chân cổng đo được là 5 m. Chiều cao cổng là 6,25m. Bạn An đứng cách chân cổng 0,35 m thì đỉnh đầu bạn ấy vừa chạm cổng. Tính chiều cao bạn An (làm tròn hai chữ số thập phân). + Trong mặt phẳng toạ độ Oxy cho điểm I(1; 2) và đường thẳng Δ: 3x + 4y + 4 = 0. Viết phương trình đường tròn (C) tâm I, cắt đường thẳng Δtheo một dây cung có độ dài bằng 8. Tìm điểm M thuộc (C) sao cho khoảng cách từ M đến Δ lớn nhất.