Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập biểu thức đại số Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 272 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm phân dạng và bài tập chủ đề biểu thức đại số trong chương trình môn Toán 8 sách Chân Trời Sáng Tạo. Chương 1 . ĐA THỨC NHIỀU BIẾN 2. Bài 1 . ĐƠN THỨC VÀ ĐA THỨC NHIỀU BIẾN 2. A Trọng tâm kiến thức 2. 1. Đơn thức nhiều biến và đơn thức thu gọn 2. 2. Đơn thức đồng dạng 2. 3. Đa thức nhiều biến. Đa thức thu gọn 2. 4. Bậc của đa thức 3. B Các dạng bài tập và phương pháp giải 3. + Dạng 1. Xác định đơn thức, đa thức 3. + Dạng 2. Tính tích các đơn thức 4. + Dạng 3. Xác định bậc của đơn thức 4. + Dạng 4. Tính giá trị của đơn thức 6. + Dạng 5. Nhận biết đơn thức đồng dạng 7. + Dạng 6. Cộng trừ các đơn thức đồng dạng 8. + Dạng 7. Tìm đơn thức thỏa mãn đẳng thức 9. + Dạng 8. Thu gọn đa thức 9. + Dạng 9. Tìm bậc của đa thức 10. + Dạng 10. Vận dụng 11. C Bài tập vận dụng 12. Bài 2 . CÁC PHÉP TOÁN VỚI ĐA THỨC NHIỀU BIẾN 18. A Trọng tâm kiến thức 18. 1. Phép cộng, trừ hai đa thức nhiều biến 18. 2. Phép nhân, chia hai đa thức nhiều biến 18. B Các dạng bài tập và phương pháp giải 19. + Dạng 1. Cộng trừ, nhân chia hai đa thức 19. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức 26. + Dạng 3. Bài toán liên quan đến chia hết 27. + Dạng 4. Rút gọn và tính giá trị của biểu thức 29. + Dạng 5. Tìm giá trị của biến x 32. + Dạng 6. Chứng minh giá trị của một biểu thức không phụ thuộc vào một biến nào đó 34. + Dạng 7. Chứng minh đẳng thức 35. + Dạng 8. Vận dụng 37. C Bài tập vận dụng 38. LUYỆN TẬP CHUNG 1 51. A Đơn thức 51. B Đa thức. Cộng trừ đa thức 57. C Phép nhân đa thức 63. D Phép chia đa thức 67. E Vận dụng 70. Bài 3 . NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ 74. A Trọng tâm kiến thức 74. B Các dạng bài tập và phương pháp giải 74. + Dạng 1. Vận dụng hằng đẳng thức để tính 74. + Dạng 2. Rút gọn và tính giá trị của biểu thức 76. + Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào các biến 78. + Dạng 4. Chứng minh đẳng thức 78. + Dạng 5. Tìm x thỏa mãn đẳng thức 79. + Dạng 6. Chứng minh chia hết 80. + Dạng 7. Chứng minh giá trị của một biểu thức luôn luôn dương (hay âm) với mọi giá trị của biến 80. + Dạng 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P (x) = ax2 + bx + c 81. + Dạng 9. Vận dụng 82. C Bài tập vận dụng 83. LUYỆN TẬP CHUNG 2 95. A Những hằng đẳng thức đáng nhớ 95. Bài 4 . VẬN DỤNG HẰNG ĐẲNG THỨC VÀO PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 102. A Trọng tâm kiến thức 102. 1. Phương pháp đặt nhân tử chung 102. 2. Phương pháp nhóm hạng tử 102. 3. Phương pháp dùng hằng đẳng thức 102. B Các dạng bài tập và phương pháp giải 102. + Dạng 1. Phương pháp đặt nhân tử chung 102. + Dạng 2. Phương pháp nhóm các hạng tử 104. + Dạng 3. Phương pháp dùng hằng đẳng thức 107. + Dạng 4. Phối hợp các phương pháp thông thường 110. + Dạng 5. Phương pháp tách một hạng tử thành nhiều hạng tử 111. + Dạng 6. Phương pháp thêm bớt cùng một hạng tử 113. + Dạng 7. Phương pháp đổi biến 114. + Dạng 8. Tính giá trị của một biểu thức 115. + Dạng 9. Tìm x 118. + Dạng 10. Chứng minh giá trị của biểu thức A chia hết cho số k 122. + Dạng 11. Vận dụng 124. C Bài tập vận dụng 126. LUYỆN TẬP CHUNG 3 146. A Phân tích đa thức thành nhân tử 146. Bài 5 . PHÂN THỨC ĐẠI SỐ 165. A Trọng tâm kiến thức 165. 1. Phân thức đại số 165. 2. Tính chất cơ bản của phân thức 165. 3. Rút gọn phân thức 165. 4. Quy đồng mẫu nhiều phân thức 166. 5. Điều kiện xác định và giá trị của phân thức 166. B Các dạng bài tập và phương pháp giải 166. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 166. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 167. + Dạng 3. Hai phân thức bằng nhau 169. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 171. + Dạng 5. Rút gọn phân thức 172. + Dạng 6. Chứng minh đẳng thức 172. + Dạng 7. Tính giá trị biểu thức 173. + Dạng 8. Chứng minh giá trị biểu thức không phụ thuộc vào biến 174. + Dạng 9. Tìm x thỏa mãn đẳng thức cho trước 175. + Dạng 10. Quy đồng mẫu thức 175. + Dạng 11. Vận dụng 177. C Bài tập vận dụng 178. Bài 6 . CỘNG, TRỪ PHÂN THỨC 185. A Trọng tâm kiến thức 185. 1. Cộng hai phân thức cùng mẫu thức 185. 2. Cộng hai phân thức có mẫu thức khác nhau 185. 3. Phân thức đối 185. 4. Phép trừ 185. B Các dạng bài tập và phương pháp giải 185. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 185. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 187. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 189. + Dạng 4. Rút gọn và tính giá trị biểu thức 190. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 190. + Dạng 6. Vận dụng 191. C Bài tập vận dụng 193. Bài 7 . NHÂN, CHIA PHÂN THỨC 200. A Trọng tâm kiến thức 200. 1. Phép nhân các phân thức đại số 200. 2. Phân thức nghịch đảo 200. 3. Phép chia 200. B Các dạng bài tập và phương pháp giải 200. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 200. + Dạng 2. Rút gọn biểu thức 201. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 203. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 203. + Dạng 5. Vận dụng 204. C Bài tập tự luyện 206. LUYỆN TẬP CHUNG 212. A Trọng tâm kiến thức 212. B Các dạng bài tập và phương pháp giải 212. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 212. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 212. + Dạng 3. Rút gọn biểu thức 213. + Dạng 4. Vận dụng 214. C Bài tập vận dụng 215. ÔN TẬP CHƯƠNG I 221. A Đơn thức 221. B Đa thức. Cộng trừ đa thức 225. C Phép nhân đa thức 230. D Phép chia đa thức cho đơn thức 232. E Những hằng đẳng thức đáng nhớ 233. F Phân tích đa thức thành nhân tử 236. G Phân thức đại số. Các phép toán 241. 1. Bài tập rèn luyện 242. 2. Bài tập bổ sung 249.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép trừ các phân thức đại số
Nội dung Chuyên đề phép trừ các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép trừ các phân thức đại số Chuyên đề phép trừ các phân thức đại số Chuyên đề này bao gồm 21 trang tài liệu, tập trung vào việc truyền đạt lý thuyết cơ bản về phân dạng và cách giải các dạng toán liên quan đến phép trừ các phân thức đại số. Tài liệu cũng tuyển chọn các bài tập từ dễ đến khó, giúp học sinh nắm vững kiến thức và kỹ năng trong việc giải các bài toán thuộc chương trình Đại số 8, chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Phân thức đối. Quy tắc trừ hai phân thức đại số. II. Bài tập và các dạng toán: Dưới đây là một số dạng toán thường gặp: Dạng 1: Thực hiện phép tính trừ với các phân thức đại số. Áp dụng quy tắc trừ các phân thức đại số. Thực hiện phép cộng các phân thức đại số. Dạng 2: Tìm phân thức thỏa mãn yêu cầu. Đưa phân thức cần tìm về dạng riêng. Sử dụng quy tắc cộng, trừ phân thức để tìm ra đáp án. Dạng 3: Giải toán sử dụng phép trừ các phân thức đại số. Thiết lập biểu thức theo yêu cầu của đề bài. Sử dụng quy tắc cộng, trừ phân thức để giải toán. III. Phiếu bài tập tự luyện: Những dạng bài tập tự luyện sau sẽ giúp bạn rèn luyện kỹ năng thêm: Tìm phân thức đối của một phân thức. Trừ các phân thức cùng mẫu thức. Trừ các phân thức không cùng mẫu thức. Chứng minh đẳng thức. Biểu diễn đại lượng thông qua biến.
Chuyên đề phép cộng các phân thức đại số
Nội dung Chuyên đề phép cộng các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép cộng các phân thức đại số Chuyên đề phép cộng các phân thức đại số Tài liệu này bao gồm 14 trang chi tiết về cách thức cộng các phân thức đại số. Nội dung tập trung vào việc tóm tắt lý thuyết quan trọng, phân dạng và hướng dẫn giải các dạng toán liên quan đến phép cộng phân thức đại số. Bên cạnh đó, tài liệu cũng cung cấp một loạt các bài tập từ cơ bản đến nâng cao để học sinh thực hành, kèm theo đáp án và lời giải chi tiết. Phần tóm tắt lý thuyết trong tài liệu giải thích hai quy tắc quan trọng khi cộng các phân thức: cộng hai phân thức cùng mẫu thức và cộng hai phân thức khác mẫu thức. Bằng cách giải thích rõ ràng và dễ hiểu, học sinh có thể nắm vững cách thức thực hiện các phép tính này. Bên cạnh đó, tài liệu cũng trình bày các dạng toán phổ biến liên quan đến phép cộng phân thức. Từ việc cộng xác phân thức thông thường đến tính giá trị biểu thức tổng các phân thức đại số, học sinh sẽ được hướng dẫn cụ thể từng bước để giải quyết các loại bài tập này. Cuối cùng, tài liệu cũng cung cấp các bài tập giải toán đố thú vị để học sinh áp dụng kiến thức về phép cộng phân thức vào thực tế. Điều này giúp học sinh hiểu rõ hơn về ứng dụng của phân thức đại số trong các tình huống thực tế.
Chuyên đề quy đồng mẫu thức nhiều phân thức
Nội dung Chuyên đề quy đồng mẫu thức nhiều phân thức Bản PDF - Nội dung bài viết Chuyên đề quy đồng mẫu thức nhiều phân thức Chuyên đề quy đồng mẫu thức nhiều phân thức Tài liệu này bao gồm 14 trang, nội dung tập trung vào lý thuyết cần thiết, các phần dạng toán và hướng dẫn giải, cũng như tuyển chọn bài tập từ cơ bản đến nâng cao về chuyên đề quy đồng mẫu thức nhiều phân thức. Bạn sẽ được cung cấp đáp án và lời giải chi tiết, giúp hỗ trợ trong quá trình học tập môn Đại số 8, chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT Để quy đồng mẫu thức nhiều phân thức, bạn cần thực hiện các bước sau: + Bước 1: Phân tích mẫu thức thành nhân tử để tìm mẫu thức chung. + Bước 2: Tìm nhân tử phụ của mỗi mẫu thức. + Bước 3: Nhân cả tử và mẫu của từng phân thức với nhân tử phụ tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN + Dạng 1: Tìm mẫu thức chung của các phân thức. + Dạng 2: Quy đồng các mẫu thức. Bằng cách áp dụng các bước và dạng toán đã hướng dẫn, bạn sẽ dễ dàng làm quen với chuyên đề này và nâng cao kỹ năng giải toán của mình. Hy vọng tài liệu sẽ giúp bạn hiểu rõ hơn về quy đồng mẫu thức nhiều phân thức và thành công trong việc học tập.
Chuyên đề rút gọn phân thức
Nội dung Chuyên đề rút gọn phân thức Bản PDF - Nội dung bài viết Tóm tắt chuyên đề rút gọn phân thứcTóm tắt lý thuyếtBài tập và các dạng toán Tóm tắt chuyên đề rút gọn phân thức Chuyên đề rút gọn phân thức là một phần quan trọng trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu được biên soạn gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao. Tóm tắt lý thuyết Để rút gọn phân thức, ta cần sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. Sau đó, sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho. Bài tập và các dạng toán Trên tài liệu, các dạng toán chính bao gồm: Dạng 1: Rút gọn phân thức bằng cách phân tích tử thức và mẫu thức thành nhân tử, sau đó rút gọn bằng cách triệt tiêu nhân tử chung. Dạng 2: Chứng minh đẳng thức, tương tự các bước chứng minh đẳng thức đã học trong chuyên đề trước. Dạng 3: Rút gọn biểu thức với điều kiện cho trước, sử dụng phương pháp phân tích đa thức thành nhân tử và các tính chất cơ bản của phân thức. Dạng 4: Chứng minh biểu thức không phụ thuộc vào biến x, thông qua việc rút gọn phân thức sao cho không còn các ẩn. Để làm bài tập hiệu quả, học sinh cần hiểu rõ lý thuyết và áp dụng đúng các phương pháp đã học. Tài liệu cũng cung cấp đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng giải toán của mình.