Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán GTLN - GTNN của môđun số phức

Bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất (viết tắt là GTLN – GTNN hoặc min – max) của biểu thức có chứa môđun số phức là một dạng toán vận dụng cao thường gặp trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây, đây là dạng toán ít được đề cập đến trong sách giáo khoa Giải tích 12, do đó đã gây không ít bỡ ngỡ và khó khăn cho các bạn học sinh trong quá trình tiếp cận và tìm hướng giải quyết bài toán. Nhằm giúp bạn đọc nắm được một số phương pháp điển hình để giải bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của biểu thức có chứa mô đun của số phức, giới thiệu tài liệu bài toán GTLN – GTNN của môđun số phức. Khái quát nội dung tài liệu bài toán GTLN – GTNN của môđun số phức: A. BÀI TOÁN CỰC TRỊ CỦA SỐ PHỨC 1. Các bài toán qui về bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm một biến. Bài toán: Trong các số phức z thoả mãn điều kiện T. Tìm số phức z để biểu thức P đạt giá trị nhỏ nhất, lớn nhất. Từ điều kiện T biến đổi để tìm cách rút ẩn rồi thế vào biểu thức P để được hàm một biến. Tìm giá trị lớn nhất (hoặc nhỏ nhất) tuỳ theo yêu cầu bài toán của hàm số một biến vừa tìm được. [ads] 2. Các bài toán qui về bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của một biểu thức hai biến mà các biến thoả mãn điều kiện cho trước. Để giải được lớp bài toán này, chúng tôi cung cấp cho học sinh các bất đẳng thức cơ bản như: Bất đẳng thức liên hệ giữa trung bình cộng và trung bình nhân, bất đẳng thức Bunhiacốpxki, bất đẳng thức hình học và một số bài toán công cụ sau: a. Bài toán công cụ 1 : Cho đường tròn (T) cố định có tâm I bán kính R và điểm A cố định. Điểm M di động trên đường tròn (T). Hãy xác định vị trí điểm M sao cho AM lớn nhất, nhỏ nhất. b. Bài toán công cụ 2 : Cho hai đường tròn (T1) có tâm I, bán kính R1, đường tròn (T2) có tâm J, bán kính R2. Tìm vị trí của điểm M trên (T1), điểm N trên (T2) sao cho MN đạt giá trị lớn nhất, nhỏ nhất. c. Bài toán công cụ 3 : Cho hai đường tròn (T) có tâm I, bán kính R, đường thẳng ∆ không có điểm chung với (T). Tìm vị trí của điểm M trên (T), điểm N trên ∆ sao cho MN đạt giá trị nhỏ nhất. B. BÀI TẬP MIN – MAX MÔ ĐUN SỐ PHỨC C. LỜI GIẢI CHI TIẾT

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề hình học Oxyz và số phức
Cuốn sách gồm 511 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề hình học Oxyz và số phức, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề hình học Oxyz và số phức: PHẦN I : HÌNH TỌA ĐỘ OXYZ. CHỦ ĐỀ 1: HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1. Điểm và vectơ trong hệ tọa độ Oxyz. Dạng 2. Tích vô hướng và ứng dụng. Dạng 3. Phương trình mặt cầu. Dạng 4. Cực trị. CHỦ ĐỀ 2: PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1. Xác định vectơ pháp tuyến, tính tích có hướng của mặt phẳng. Dạng 2. Viết phương trình mặt phẳng. Dạng 3. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng 4. Góc và khoảng cách liên quan đến mặt phẳng. Dạng 5. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. Dạng 6. Cực trị liên quan đến mặt phẳng. CHỦ ĐỀ 3: PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1. Xác định vectơ chỉ phương của đường thẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 4. Góc và khoảng cách liên quan đến đường thẳng. Dạng 5. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng 6. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Dạng 7. Cực trị liên quan đến đường thẳng. CHỦ ĐỀ 4: ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ. Dạng 1. Tọa độ hóa Hình học không gian. Dạng 2. Bài toán đại số. CHỦ ĐỀ 5: TỔNG HỢP VỀ HÌNH TỌA ĐỘ OXYZ. PHẦN II : SỐ PHỨC. Dạng toán 1: Xác định các yếu tố cơ bản của số phức. Dạng toán 2: Phép toán cộng, trừ, nhân hai số phức. Dạng toán 3: Phép chia hai số phức. Dạng toán 4: Bài tập quy về giải PT – HPT và tập hợp điểm biễu diễn số phức. Dạng toán 5: Phương trình bậc hai với hệ số thực. Dạng toán 6: Cực trị số phức.
Chuyên đề cực trị số phức
Tài liệu gồm 60 trang, phân dạng và hướng dẫn giải các bài tập trắc nghiệm vận dụng cao (VDC) chuyên đề cực trị số phức, giúp học sinh chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. A. MỘT SỐ TÍNH CHẤT CẦN NHỚ 1. Môđun của số phức. 2. Một số quỹ tích nên nhớ. B. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng. Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn. Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip. C. BÀI TẬP ÁP DỤNG
Tổng ôn tập TN THPT 2021 môn Toán Số phức
Tài liệu gồm 84 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề số phức, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 4, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Số phức: 1. Mức độ nhận biết: 81 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 08). 2. Mức độ thông hiểu: 75 câu. + Câu hỏi và bài tập (Trang 21). + Đáp án và lời giải chi tiết (Trang 28). 3. Mức độ vận dụng thấp: 42 câu. + Câu hỏi và bài tập (Trang 44). + Đáp án và lời giải chi tiết (Trang 48). 4. Mức độ vận dụng cao: 29 câu. + Câu hỏi và bài tập (Trang 63). + Đáp án và lời giải chi tiết (Trang 67).
Tài liệu tự học chuyên đề số phức - Bùi Đình Thông
Tài liệu gồm 68 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, hướng dẫn học sinh lớp 12 tự học chuyên đề số phức (Giải tích 12 chương 4). Bài 1. Mở đầu về số phức. Bài 2. Phép tính số phức. Bài tập rèn luyện số phức và các tính chất. Bài tập rèn luyện các phép toán số phức. Bài toán quỹ tích (tập hợp điểm). Bài tập rèn luyện tìm tập hợp điểm của số phức. Bài 3. Phương trình bậc hai số phức. Bài tập rèn luyện phương trình bậc hai số phức. Cực trị của số phức. Bài tập rèn luyện cực trị của số phức.