Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội

Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán lớp 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 11 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề thi HSG lớp 11 môn Toán năm 2018 2019 trường Phùng Khắc Khoan Hà Nội Bản PDF Nhằm tuyển chọn các em học sinh giỏi Toán lớp 11 để tuyên dương, khen thưởng, làm tấm gương cho các học sinh khác, đồng thời bổ sung vào đội tuyển học sinh giỏi Toán lớp 11 cấp trường, vừa qua, trường THPT Phùng Khắc Khoan – Thạch Thất – Hà Nội đã tiến hành tổ chức kỳ thi học sinh giỏi Toán lớp 11, các em học sinh được chọn trong kỳ thi lần này sẽ được tiếp tục bồi dưỡng để tham dự kỳ thi học sinh giỏi Toán lớp 11 cấp thành phố. Đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội được biên soạn theo hình thức tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài thi Toán là 150 phút. [ads] Trích dẫn đề thi HSG Toán lớp 11 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + An và Bình thi đấu với nhau một trận bóng bàn có tối đa 5 séc, người nào thắng trước 3 séc sẽ giành chiến thắng chung cuộc. Xác suất An thắng mỗi séc là 0,4 (không có hòa). Tính xác suất để An thắng chung cuộc. + Trong mặt phẳng tọa độ Oxy, cho các điểm A(-2;3), A'(1;5) và B(5;-3), B'(7;-2). Phép quay tâm I(x;y) biến A thành A’ và B thành B’, tính x + y. + Cho a, b, c là ba hằng số và (un) là dãy số được xác định bởi công thức: un = a√(n + 1) + b√(n + 2) + c√(n + 3) (với mọi n thuộc N*). Chứng minh rằng limun = 0 (n tiến đến vô cùng) khi và chỉ khi a + b + c = 0.
Đề thi HSG lớp 11 môn Toán cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh
Nội dung Đề thi HSG lớp 11 môn Toán cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh Bản PDF Nhằm tuyển chọn các em học sinh khối lớp 11 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán lớp 11 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán lớp 11 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi HSG Toán lớp 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức tự luận với 5 bài toán, đề gồm 01 trang, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi HSG Toán lớp 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD = a, AB = b. Mặt bên SAD là tam giác đều. M là một điểm di động trên AB, Mặt phẳng (P) đi qua M và song song với SA, BC. 1. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (P). Thiết diện là hình gì? 2. Tính diện tích thiết diện theo a, b và x = AM (0 < x < b). Tìm x theo b để diện tích thiết diện lớn nhất. + Chọn ngẫu nhiên một số tự nhiên có sáu chữ số khác nhau. Tính xác suất để chọn được một số có 3 chữ số chẵn và 3 chữ số lẻ. + Cho các số x + 5y, 5x + 2y, 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số (y – 1)^2, xy – 1, (x + 2)^2 theo thứ tự lập thành một cấp số nhân. Hãy tìm x, y. File WORD (dành cho quý thầy, cô):