Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Chào mừng đến với đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của trường THCS Cành Nàng, Thanh Hóa. Đề thi này sẽ giúp các em học sinh lớp 7 ôn tập và kiểm tra kiến thức của mình để chuẩn bị cho cuộc thi sắc đẹp trong tương lai. Đề thi bao gồm các câu hỏi chất lượng, có đáp án và lời giải chi tiết để giúp các em hiểu rõ từng bước giải của bài toán. Dưới đây là một số ví dụ về các câu hỏi trong đề khảo sát: 1. Số A được chia thành 3 số tỉ lệ theo 2 : 3 : 1. Biết rằng tổng các bình phương của ba số đó bằng 24309. Hãy tìm số A. 2. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Hãy chứng minh rằng: a) AC = EB và AC // BE. b) I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH // BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. 3. Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n là số nguyên dương) đều là các số chính phương thì n chia hết cho 40. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện và phát triển kỹ năng Toán của mình. Chúc các em thành công trong việc học tập và thi cử!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đội tuyển Toán 7 lần 5 năm 2023 - 2024 trường THCS Xuân Lẹ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 7 lần 5 năm học 2023 – 2024 trường THCS Xuân Lẹ, huyện Thường Xuân, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn: x2 – 3xy + p2y2 = 12p. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2×5 – 1 chia hết cho y4 và 2y2 + 1 chia hết cho x4. + Cho tam giác ABC không cân tại A, cạnh BC cố định, đỉnh A di động. Vẽ phân giác trong AD của tam giác. Trên tia CA lấy điểm E sao cho CE = AB. Gọi I là trung điểm của AE. Chứng minh rằng đường thẳng đi qua I và song song với AD luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Anh Sơn – Nghệ An : + Một người mang một số tiền vào siêu thị mua hoa quả và nhẩm tính với số tiền đó có thể mua được 3kg nho hoặc 4kg táo hoặc 5kg mận. Tính giá tiền mỗi loại, biết 3kg táo đắt hơn 2kg mận là 210 000 đồng. + Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm BC. a) Chứng minh các tam giác DAB và DAC vuông cân. b) Lấy điểm M bất kỳ trên đoạn CD. Kẻ các đoạn thẳng BE và CF vuông góc với đường thẳng AM (E; F thuộc đường thẳng AM). Chứng minh rằng: BE = AF. c) Chứng minh tam giác DEF vuông cân. + Cho ABC cân tại B, có ABC = 80 độ. Lấy điểm I nằm trong tam giác sao cho IAC = 10 độ và ICA = 30 độ. Tính số đo AIB.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Chứng minh rằng với mọi số nguyên dương m và n thì mn(m2 – 1)(n2 + 2) chia hết cho 9. + Cho đa thức f(x), biết rằng khi chia f(x) cho x – 1 thì dư 3, chia cho x – 2 thì dư 5, chia cho (x – 1)(x – 2) thì được thương là 2x và còn dư. Tìm đa thức f(x). + Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC tại H, tia phân giác của HAC cắt BC tại D. a) Chứng minh BA = BD. b) Trên tia đối của tia AB lấy điểm K sao cho AK = HD. Kẻ DE vuông góc với AC tại E. Chứng minh KE // AD. c) Gọi F là giao điểm của HK với AD, chứng minh F là trung điểm của đoạn thẳng HK.