Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phân số lớp 6 môn Toán Kết Nối Tri Thức Với Cuộc Sống

Nội dung Phân dạng và bài tập phân số lớp 6 môn Toán Kết Nối Tri Thức Với Cuộc Sống Bản PDF - Nội dung bài viết Phân Dạng và Bài Tập Phân Số Lớp 6 Môn Toán Phân Dạng và Bài Tập Phân Số Lớp 6 Môn Toán Tài liệu này bao gồm 180 trang, đã được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi. Nội dung chủ yếu xoay quanh phân dạng và bài tập chuyên đề về phân số trong chương trình môn Toán lớp 6 theo bộ sách "Kết Nối Tri Thức Với Cuộc Sống". Chương 6 của sách tập trung vào phân số, với bài số 23 mở rộng khái niệm về phân số và phân số bằng nhau. Các kiến thức cần nhớ và kỹ năng giải bài toán được tập trung trong các dạng nhận biết phân số, viết phân số, biểu thị số đo dưới dạng phân số, tìm điều kiện cho phân số, và nhiều dạng bài tập khác. Bài tập 24 tập trung vào so sánh phân số và hỗn số dương. Các dạng bài tập bao gồm tìm mẫu chung nhỏ nhất, quy đồng mẫu số, so sánh phân số, viết phân số dưới dạng hỗn số và ngược lại. Bài số 25 và 26 tiếp tục với phép cộng, trừ, nhân và chia phân số. Các kỹ năng giải toán bao gồm thực hiện các phép toán này, tìm số chưa biết trong đẳng thức, và các bài toán có lời văn. Bài số 27 tập trung vào hai bài toán khác nhau về phân số, trong đó học sinh được yêu cầu áp dụng kiến thức đã học để giải quyết các vấn đề cụ thể. Cuối cùng, ôn tập chương VI và VII giúp học sinh tổng kết kiến thức và thực hành các bài tập đa dạng. Đề kiểm tra cuối chương cung cấp cơ hội cho học sinh tự kiểm tra kiến thức của mình sau khi học xong chương. Tài liệu này cung cấp một cách tổng quan và cụ thể về chủ đề phân số, giúp học sinh hiểu và ứng dụng kiến thức một cách linh hoạt trong các bài tập thực hành.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm so sánh phân số, hỗn số dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề so sánh phân số, hỗn số dương, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT I. QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. Để quy đồng mẫu hai hay nhiều phân số có mẫu số dương, ta làm như sau: + Tìm một bội chung (thường là BCNN) của các mẫu để làm mẫu chung. + Tìm thừa số phụ của mỗi mẫu bằng cách chia mẫu chung cho từng mẫu. + Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng. II. SO SÁNH HAI PHÂN SỐ. 1. So sánh hai phân số có cùng mẫu. Trong hai phân số cùng một mẫu số dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn. 2. So sánh hai phân số không cùng mẫu. Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh tử với nhau: Phân số nào có tử lớn hơn thì phân số đó lớn hơn. III. HỖN SỐ DƯƠNG. 1. Hỗn số. Một số có dạng b a c được gọi là một hỗn số trong đó a là phần nguyên, b c là phần phân số. Hỗn số b a c được đọc là a b phần c (vd 2 3 3 đọc là Ba hai phần ba). 2. Chuyển từ phân số sang hỗn số. Muốn viết một phân số (lớn hơn 1) a b trong đó a b c d (a chia b được thương c dư d) thì khi đó a b c d d d c c b b b b. Vậy a d c b b. 3. Chuyển từ hỗn số sang phân số. Muốn viết một hỗn số b a c về dạng một phân số ta làm như sau: b a c b a c c. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề mở rộng phân số, phân số bằng nhau, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm phân số. Với a b Z b 0 ta gọi a b là một phân số trong đó a là tử số (tử) và b là mẫu số (mẫu ) của phân số. Chú ý: Mọi số nguyên đều viết được dưới dạng phân số với mẫu số là 1 1 a a. 2. Hai phân số bằng nhau. Quy tắc bằng nhau của hai phân số a c b d nếu a d b c. 3. Tính chất cơ bản của phân số. Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Nếu chia cả tử và mẫu của một phân số với cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: PHÂN SỐ. DẠNG 2: PHÂN SỐ BẰNG NHAU. DẠNG 3: TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. DẠNG 4: RÚT GỌN PHÂN SỐ, PHÂN SỐ TỐI GIẢN.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có tâm đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT O là trung điểm của đoạn thẳng AB ta nói hai điểm A và B đối xứng nhau qua O. Hình có tâm đối xứng. Tâm đối xứng. Hình bình hành ABCD là hình có tâm đối xứng và giao điểm O của hai đường chéo là tâm đối xứng của hình bình hành ABCD. Đường tròn (O) là hình có tâm đối xứng. Tâm O là tâm đối xứng của đường tròn (O). B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có trục đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm hình có trục đối xứng. – Cho hình (H). Nếu có một đường thẳng d chia hình (H) thành hai phần bằng nhau mà khi “gấp” hình theo đường thẳng d thấy hai phần đó “chồng khít” lên nhau thì hình (H) được gọi là hình có trục đối xứng. – Đường thẳng d nói trên được gọi là trục đối xứng của hình (H). 2. Chú ý. – Hình có trục đối xứng còn được gọi là hình đối xứng trục. – Không phải hình nào cũng đều có trục đối xứng. – Một hình có thể có một, hai, ba, … trục đối xứng, có thể có vô số trục đối xứng. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.