Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Hải Dương

Nội dung Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán sở GD&ĐT Hải Dương năm 2021 - 2022 Đề thi tuyển sinh lớp 10 THPT môn Toán sở GD&ĐT Hải Dương năm 2021 - 2022 Ngày 15 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 - 2022. Đề tuyển sinh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút (không tính thời gian phát đề). Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: 1. Cho một mảnh đất hình chữ nhật có chu vi 24m. Nếu tăng chiều dài lên 2m và giảm chiều rộng đi 1m thì diện tích mảnh đất tăng thêm 1m2. Hãy tìm độ dài các cạnh của mảnh đất ban đầu. 2. Cho phương trình 2x3 - mx2 + 1 = 3x. Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt 1 và 2 với mọi m. Tìm các giá trị của tham số m sao cho x2 - x + 4. 3. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O R và hai đường cao AE, BF cắt nhau tại H (E BC F AC). a) Chứng minh rằng bốn điểm A, B, E, F cùng nằm trên một đường tròn. b) Chứng minh rằng OC // EF. 4. Cho tam giác ABC có B C là các góc nhọn và có diện tích không đổi. Tìm giá trị nhỏ nhất của biểu thức 2P = BC/AC + BC/AB + 2AB/BC.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi Toán chuyên Tuyển sinh lớp 10 năm 2022 - 2023 Sở GD&ĐT Bình Định Đề thi Toán chuyên Tuyển sinh lớp 10 năm 2022 - 2023 Sở GD&ĐT Bình Định Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Bình Định. Đề thi sẽ diễn ra vào ngày 11 tháng 06 năm 2022, bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề thi: 1. Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn (O). Gọi H là giao điểm của các đường cao AD, BE, CF. M là trung điểm của BC. Chứng minh tứ giác DMEF là tứ giác nội tiếp. 2. Đường tròn tâm I đường kính AH cắt đường tròn (O) tại điểm thứ hai là P. Kẻ đường kính AK của đường tròn (O). Chứng minh bốn điểm P, H, M, K thẳng hàng. 3. Các tiếp tuyến tại A và P của đường tròn (I) cắt nhau ở N. Chứng minh ba đường thẳng MN, EF, AH đồng quy. 4. Có tất cả bao nhiêu đa thức P(x) có bậc không lớn hơn 2 với các hệ số nguyên không âm và P(3) = 100? 5. Cho phương trình 3x^2 + bx + cx + 1 = 0 trong đó b, c là các số nguyên. Biết phương trình có nghiệm 0 và 2 + √5. Tìm b, c và các nghiệm còn lại của phương trình. Để tải và xem đề thi chi tiết, vui lòng truy cập vào file WORD tại đường link sau...
Đề tuyển sinh môn Toán năm 2022 2023 trường THPT chuyên Bắc Giang
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 trường THPT chuyên Bắc Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2022-2023 trường THPT chuyên Bắc Giang Đề tuyển sinh môn Toán năm 2022-2023 trường THPT chuyên Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022-2023 của trường THPT chuyên Bắc Giang. Kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2022, với đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn một số câu hỏi trong đề thi: 1) Cho nửa đường tròn O có đường kính AB. Gọi M là một điểm thuộc nửa đường tròn, H là hình chiếu của M trên AB. Chứng minh rằng bốn điểm O, B, K, M cùng thuộc một đường tròn. 2) Gọi C, D lần lượt là hình chiếu của H trên các đường thẳng MA và MB. Chứng minh ba đường thẳng CD, MH, AK đồng quy. 3) Tìm vị trí của điểm M để diện tích tứ giác CDFE đạt giá trị lớn nhất, trong đó E, F lần lượt là trung điểm của AH và BH. Cùng với các câu hỏi khác về số học và đại số, đề thi tuyển sinh môn Toán năm 2022-2023 trường THPT chuyên Bắc Giang hứa hẹn mang đến thách thức và cơ hội cho các em học sinh thể hiện tài năng và kiến thức.
Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT
Nội dung Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 tại trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 Toán (chuyên) 2022 – 2023 trường chuyên Lê Quý Đôn – BR VT: + Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn tâm O và có ba đường cao AD, BE, CF cắt nhau tại H. Gọi I, J lần lượt là trung điểm của AH và BC. a) Chứng minh rằng IJ vuông góc với EF và IJ song song với OA. b) Gọi K, Q lần lượt là giao điểm của EF với BC và AD. Chứng minh rằng QE = KE và QF = KF. c) Đường thẳng chứa tia phân giác của FHB cắt AB, AC lần lượt tại M và N. Tia phân giác của CAB cắt đường tròn ngoại tiếp tam giác AMN tại điểm P khác A. Chứng minh ba điểm H, P, J thẳng hàng. + Cho tam giác ABC cố định có diện tích S. Đường thẳng d thay đổi đi qua trọng tâm của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Gọi 1, 2 là diện tích các tam giác ABN và ACM. Hãy tìm giá trị nhỏ nhất của 1/2 + S/2. + Cho các số thực a, b, c, d thỏa mãn 2ac > bd. Chứng minh phương trình sau luôn có nghiệm: 2x^2 - ax + b = cx - dx.
Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Xin chào quý thầy cô và các em học sinh lớp 9. Dưới đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Kỳ thi diễn ra vào ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang: Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -2x + 3. Vẽ parabol (P) và tìm toạ độ các giao điểm của (P) và (d) bằng phép tính. Viết phương trình đường thẳng (d′) song song với (d) và tiếp xúc (P). Tính toạ độ tiếp điểm M của (d′) và (P). Một xe tải đi từ A đến B cách nhau 210 km. Sau 2 giờ, trên cùng quãng đường, một ô tô khởi hành từ B đến A với vận tốc lớn hơn xe tải 10 km/h. Tính vận tốc xe tải khi hai xe gặp nhau tại nơi cách A 150 km. Cho tam giác ABC có ba góc nhọn. Kẻ các đường cao AD và BE (D ∈ BC và E ∈ AC). Chứng minh tứ giác ABDE nội tiếp đường tròn và xác định tâm O của đường tròn đó. Chứng minh rằng CD·CB = CE·CA. Giả sử ACB đo 60 độ và AB = 6 cm. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OD, OE và cung nhỏ DE của đường tròn (O). Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!