Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập cuối kì 2 Toán 8 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn nội dung ôn tập kiểm tra cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. Phần 1 . Nội dung kiến thức cần ôn tập. 1. Các đơn vị kiến thức đã học từ tuần 19 đến hết tuần 30. 2. Một số câu hỏi trọng tâm. Câu 1. Khái niệm phương trình bậc nhất một ẩn? Hai phương trình tương đương? Câu 2. Nêu các quy tắc biến đổi tương đương phương trình? Câu 3. Nêu khái niệm bất đẳng thức, bất phương trình bậc nhất một ẩn? Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân)? Các quy tắc biến đổi bất phương trình? Câu 4. Phương pháp giải các phương trình bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu, bất phương trình bậc nhất một ẩn, phương trình có chứa dấu giá trị tuyệt đối? Câu 5. Nêu các bước giải bài toán bằng các lập phương trình. Câu 6. Phát biểu, vẽ hình, viết GT-KL định lí Talet, định lí đảo và hệ quả của định lí Talet. Câu 7. Phát biểu, vẽ hình, viết GT–KL tính chất đường phân giác của tam giác. Câu 8. Nêu khái niệm hai tam giác đồng dạng, các trường hợp đồng dạng của tam giác. Câu 9. Khái niệm hình hộp chữ nhật, hình lập phương? Nêu các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương? Phần 2 . Một số dạng bài tập minh hoạ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính giá trị biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tính giá trị biểu thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.
Chuyên đề tìm GTLN - GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề tìm GTLN – GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8. I. LÝ THUYẾT 2. II. MỘT SỐ PHƯƠNG PHÁP CƠ BẢN 3. Phương pháp 1. Sử dụng phép biến đổi đồng nhất 3. + Dạng 1. Tìm GTNN và GTLN của đa thức bậc hai đơn giản 3. + Dạng 2. Tìm GTNN và GTLN của đa thức bậc bốn đơn giản 10. + Dạng 3. Tìm GTNN và GTLN của biểu thức dạng A/B 14. + Dạng 4. Tìm min – max của biểu thức có điều kiện của biến 31. + Dạng 5. Sử dụng các bất đẳng thức cơ bản 41. + Dạng 6. Tìm min – max bằng cách sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối 44. Phương pháp 2. Phương pháp chọn điểm rơi 47. Phương pháp 3. Sử dụng phương pháp đặt biến phụ 53. Phương pháp 4. Sử dụng biểu thức phụ 56. Phương pháp 5. Phương pháp miền giá trị 59. Phương pháp 6. Phương pháp xét từng khoảng giá trị 61. Phương pháp 7. Phương pháp hình học 64.
Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.
Chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 24 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng tính chất 2 a a k. Dạng 2. Đưa về tổng các số chính phương. Dạng 3. Đưa về phương trình tích. Dạng 4. Đưa về ước số. Dạng 5. Sử dụng bất đẳng thức.