Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức và các phép toán về số phức - Diệp Tuân

Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1. Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân: Nhóm bài toán 1 . Tính toán cộng trừ, nhân chia các số phức. + Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. + Số phức và thuộc tính của nó. + Lũy thừa đơn vị ảo. Nhóm bài toán 2 . Hai số phức bằng nhau. + Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau. + a + bi = c + di khi và chỉ khi a, b, c, d thuộc R. Nhóm bài toán 3 . Tính toán số phức có chứa lũy thừa đơn vị ảo i^n. + Áp dụng các công thức lũy thừa đơn vị ảo. + Áp dụng các phép toán cộng trừ, nhân chai số phức. [ads] Nhóm bài toán 4 . Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w. + Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số. + Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG). + Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ. Nhóm bài toán 5 . Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo. + Số phức z thuần ảo ⇔ phần thực a = 0. + Số phức z là số thực ⇔ phần ảo b = 0. Nhóm bài toán 6 . Nhóm bài toán lấy môđun hai vế của đẳng thức số phức. + Sử dụng phép kéo theo của hai số phức bằng nhau. + Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn. Nhóm bài toán 7 . Chuẩn hóa số phức. 

Nguồn: toanmath.com

Đọc Sách

50 câu trắc nghiệm tổng ôn số phức có lời giải chi tiết - Lê Viết Nhơn
Tài liệu gồm 15 trang tuyển tập 50 câu hỏi trắc nghiệm tổng ôn chuyên đề số phức được trích từ các đề thi thử THPT Quốc gia năm 2017. Các câu hỏi được phân tích và giải chi tiết. Trích dẫn tài liệu : + Cho số phức z = 3 – 2i. Tìm phần thực và phần ảo của số phức z A. Phần thực bằng –3 và Phần ảo bằng –2i B. Phần thực bằng –3 và Phần ảo bằng –2 C. Phần thực bằng 3 và Phần ảo bằng 2i D. Phần thực bằng 3 và Phần ảo bằng 2 [ads] + Trên trường số phức C, cho phương trình az^2 + bz + c = 0 (a, b, c ∈ R, a ≠ 0). Chọn khẳng định sai: A. Phương trình luôn có nghiệm B. Tổng hai nghiệm bằng -b/a C. Tích hai nghiệm bằng c/a D. Δ = b^2 – 4ac thì phương trình vô nghiệm + Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức z = a + bi (a, b ∈ R, a.b ≠ 0). M’ là diểm biểu diễn cho số phức z‾. Mệnh đề nào sau đây đúng? A. M’ đối xứng với M qua Oy B. M’ đối xứng với M qua Ox C. M’ đối xứng với M qua O D. M’ đối xứng với M qua đường thẳng y = x
Tuyển tập một số bài toán trắc nghiệm số phức trong các đề thi thử - Trần Văn Tài
Tài liệu gồm 17 trang tuyển tập 118 bài tập trắc nghiệm số phức trong các đề thi thử THPT Quốc gia 2017 có đáp án. Các bài tập được phân thành các dạng: + Dạng 1. Tìm phần thực và phần ảo + Dạng 2. Tìm modun của số phức + Dạng 3. Tìm số phức z thỏa điều kiện cho trước + Dạng 4. Tập hợp điểm + Dạng 5. Giải phương trình [ads]
100 câu hỏi trắc nghiệm số phức tổng hợp - Lê Bá Bảo
Tài liệu gồm 12 trang tổng hợp 100 bài toán số phức, có đáp án, tài liệu được biên soạn phục vụ ôn tập kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Trong các kết luận sau, kết luận nào sai? A. Môđun của số phức z là một số thực B. Môđun của số phức z là một số phức C. Môđun của số phức z là một số thực dương D. Môđun của số phức z là một số thực không âm [ads] + Nếu acgumen của z bằng -π/2 + k2π (k ∈ Z) thì: A. Phần ảo của z là số dương và phần thực của z bằng 0 B. Phần ảo của z là số âm và phần thực của z bằng 0 C. Phần thực của z là số âm và phần ảo của z bằng 0 D. Phần thực và phần ảo của z đều là số âm + Khi số phức z ≠ 0 thay đổi tuỳ ý thì tập hợp các số z^2 + 1 là: A. Tập hợp các số thực lớn hơn 1 B. Tập hợp các số phức C. Tập hợp các số phức khác 1 D. Tập hợp các số phức khác 0 và -i
Chuyên đề trắc nghiệm số phức - Phạm Văn Huy
Tài liệu chuyên đề số phức được biên soạn bởi tác giả Phạm Văn Huy gồm 140 trang với các bài toán trắc nghiệm số phức chọn lọc có lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề trắc nghiệm số phức – Phạm Văn Huy: Chủ đề 1 . Các phép toán cơ bản (236 bài tập). Chủ đề 2 . Biểu diễn hình học của số phức (74 bài tập). Loại 1 : Trong mặt phẳng tọa độ Oxy, hãy tìm tập hợp điểm M biểu diễn các số phức z = x + yi thỏa mãn điều kiện K cho trước? + Bước 1. Gọi M(x; y) là điểm biểu diễn số phức: z = x + yi (x, y ∈ R). + Bước 2. Biến đổi điều kiện K để tìm mối liên hệ giữa x, y và kết luận. Loại 2 : Tìm số phức z có lớn nhất, nhỏ nhất thỏa mãn tính chất K cho trước. + Bước 1. Tìm tập hợp điểm biểu diễn các số phức z để được mối liên hệ giữa x và y. + Bước 2. Dựa vào mối liên hệ giữa x và y ở bước 1, để tìm |z|_min, |z|_max. Thông thường với loại này, người ra đề hay cho tập hợp biểu diễn số phức z là một đường thẳng hoặc đường tròn. Khi đó, ta có hai hướng xử lý: một là sử dụng phương pháp hình học, hai là sử dụng phương pháp đại số (bất đẳng thức). [ads] Chủ đề 3 . Phương trình bậc hai và phương trình bậc cao (44 bài tập). Xét phương trình bậc hai az^2 + bz + c = 0 với a khác 0 có biệt số Δ = b^2 – 4ac. Khi đó: + Nếu Δ = 0 thi phương trình có nghiệm kép -b/2a. + Nếu Δ khác 0 và gọi φ là căn bậc hai của Δ thì phương trình có hai nghiệm (-b ± φ)/2a. Ta có thể làm tương tự đối với trường hợp căn bậc ba, căn bậc bốn. Ngoài cách tìm căn bậc hai của số phức như trên, ta có thể tách ghép đưa về số chính phương dựa vào hằng đẳng thức. Bài tập trắc nghiệm (57 bài tập).