Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2017 2018 trường THCS Nguyễn Chích Thanh Hóa

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2017 2018 trường THCS Nguyễn Chích Thanh Hóa Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 7 năm 2017 - 2018 trường THCS Nguyễn Chích Thanh Hóa Đề giao lưu HSG Toán lớp 7 năm 2017 - 2018 trường THCS Nguyễn Chích Thanh Hóa Xin chào quý thầy cô và các bạn học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến mọi người đề giao lưu HSG Toán lớp 7 năm 2017 - 2018 của trường THCS Nguyễn Chích Thanh Hóa. Đề thi bao gồm đáp án, lời giải và thang điểm cho các bạn tham khảo. Trích dẫn một số câu hỏi trong đề giao lưu HSG Toán lớp 7 năm 2017 - 2018 trường THCS Nguyễn Chích Thanh Hóa: + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Hãy chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH ⊥ BC tại H. Biết HBE = 50°; MEB = 25°. Hãy tính HEM và BME. + Tìm hai số nguyên dương x và y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35, 210 và 12. + Tính giá trị biểu thức A. Hy vọng rằng đề giao lưu này sẽ giúp các bạn học sinh lớp 7 ôn tập và nâng cao kiến thức Toán. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho đa thức F(x) = ax2 + bx + c trong đó a, b, c là các số hữu tỉ biết. Biết rằng F(0); F(1); F(2) đều có giá trị nguyên. Chứng minh rằng 2a là số nguyên. + Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC cân tại A, có ba góc đều là góc nhọn. Về phía ngoài của tam giác ABC vẽ các tam giác vuông cân: ABE vuông cân tại B, ACF vuông cân tại C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh: а) ЕAН = FAH. b) BI = CE và BI vuông góc với CE. c) Ba đường thẳng AH, CE, BF đồng quy.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Có hai chiếc hộp giống nhau. Trong mỗi hộp chứa 4 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4 (hai thẻ khác nhau thì ghi hai số khác nhau). Rút ngẫu nhiên một thẻ ở trong mỗi hộp. Tính xác suất để rút được hai thẻ ghi số giống nhau trong cùng một lần rút? + Cho tam giác ABC vuông tại A có AB = AC, có D là trung điểm BC. Trên đoạn BD lấy E (khác B, D), trên tia đối của tia CB lấy điểm F sao cho BE = CF. Kẻ các đường thẳng vuông góc với BC tại E cắt AB tại G, đường vuông góc với BC tại F cắt AC tại H. Gọi giao điểm của GH với BC là I a) Chứng minh BG = CH, IG = IH. b) Kẻ đường thẳng vuông góc với CA tại C, cắt AD tại M. Chứng minh MI vuông góc với GH. c) Đường thẳng vuông góc với DG tại D cắt AC tại K, chứng minh rằng AK + AG ≤ DG + DK. + Tìm số tự nhiên m, n sao cho 2 3 4 n m là số chính phương.
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biểu đồ đoạn thẳng dưới đây biểu diễn số lượt khách đã đến ăn Phở Bò tại một nhà hàng vào một số thời điểm trong ngày. Tỉ số phần trăm số lượt khách vào ăn Phở tại thời điểm 11 giờ so với tổng số lượt khách vào ăn Phở tại thời điểm 9 giờ đến thời điểm 17 giờ là (Làm tròn kết quả đến chữ số thập phân thứ hai). + Một hộp có chứa bốn cái thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; 3; 4. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên hai thẻ trong hộp. Tính xác xuất của biến cố “Tích các số trên hai thẻ rút ra là số chẵn”. + Diện tích ba mặt của một hình hộp chữ nhật là 30 cm2, 40 cm2 và 75 cm2. Hỏi thể tích của hình hộp đó bằng bao nhiêu cm3?