Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Tài Chung

Tài liệu gồm 60 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tóm tắt lý thuyết, dạng toán, phương pháp giải, bài tập trắc nghiệm có đáp án và bài tập tự luận tự luyện chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 1, ôn thi tốt nghiệp THPT môn Toán. Khái quát nội dung chuyên đề hàm số lượng giác và phương trình lượng giác – Nguyễn Tài Chung: BÀI 1 . CÁC HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác định của hàm số. Dạng 2. Xét tính chẵn, lẻ của hàm số lượng giác y = f (x). Dạng 3. Xét chiều biến thiên của hàm số lượng giác. Dạng 4. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. Dạng 5. Phương pháp lượng giác hoá. Dạng 6. Xét tính tuần hoàn của hàm số lượng giác. Dạng 7. Một số bài toán khác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng 8. Phương trình lượng giác cơ bản. Dạng 9. Giải phương trình lượng giác thoả mãn điều kiện cho trước. Dạng 10. Rèn luyện kĩ năng biến đổi thành tích. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI, BẬC BA ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC. Phương trình bậc hai, bậc ba đối với một hàm số lượng giác là những phương trình dạng: at2 + bt + c = 0, at3 + bt2 + ct + d = 0, với t là một hàm số lượng giác nào đó. BÀI 4 . PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SIN X VÀ COS X. BÀI 5 . PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI ĐỐI VỚI SIN X VÀ COS X. BÀI 6 . SỬ DỤNG CÁC CÔNG THỨC BIẾN ĐỔI ĐỂ GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC. Việc sử dụng các công thức biến đổi nhằm đưa phương trình đã cho về phương trình tích hoặc các phương trình đã biết cách giải. 1. Công thức biến đổi tổng thành tích. 2. Công thức biến đổi tích thành tổng. 3. Công thức hạ bậc, nâng cung. [ads] BÀI 7 . PHƯƠNG TRÌNH ĐƯA VỀ DẠNG TÍCH. Trong các đề thi tuyển sinh vào Đại học, Cao đẳng những năm gần đây, đa số các bài toán về giải phương trình lượng giác đều rơi vào một trong hai dạng: Phương trình đưa về dạng tích hoặc phương trình chứa ẩn ở mẫu. Để đưa phương trình đã cho về phương trình tích điều quan trọng nhất vẫn là làm sao để phát hiện ra nhân tử chung nhanh nhất. BÀI 8 . MỘT SỐ PHÉP ĐẶT ẨN PHỤ THÔNG DỤNG. 1. Phép đặt ẩn phụ u = sin x + cos x, với điều kiện |u| ≤ √2. 2. Phép đặt ẩn phụ u = sin x cos x = 1/2sin 2x (khi đó |u| ≤ 1/2). 3. Phép đặt ẩn phụ t = tan x + cot x. 4. Phép đặt ẩn phụ t = tan x/2. BÀI 9 . PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU VÀ PHƯƠNG PHÁP KẾT HỢP NGHIỆM. Với loại phương trình này khi giải nếu không cẩn thận rất dễ dẫn đến lấy thừa hoặc thiếu nghiệm. Điều quan trọng đầu tiên để giải dạng này là đặt điều kiện và kiểm tra điều kiện xác định. Thông thường ta hay dùng đường tròn lượng giác hoặc phương trình nghiệm nguyên để loại nghiệm. Một phương pháp rất hiệu quả là kết hợp điều kiện, loại nghiệm ngay trong từng bước biến đổi. BÀI 10 . MỘT SỐ BÀI TOÁN SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ. BÀI 11 . SỬ DỤNG LƯỢNG GIÁC ĐỂ GIẢI PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH ĐẠI SỐ. Lợi thế của phương pháp lượng giác hóa là đưa phương trình ban đầu về một phương trình lượng giác cơ bản đã biết cách giải như phương trình đẳng cấp, đối xứng … và điều kiện nhận hoặc loại nghiệm cũng dễ dàng hơn rất nhiều. Vì lượng giác là hàm tuần hoàn nên ta chú ý đặt điều kiện các biểu thức lượng giác sao cho khi khai căn không có dấu trị tuyệt đối, có nghĩa là luôn dương. BÀI 12 . BẤT PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Trong bài này ta sẽ giải các bất phương trình lượng giác cơ bản, đó là sin x ≥ a, cos x ≥ a, tan x ≥ a, cot x ≥ a, sin x ≤ a, cos x ≤ a, tan x ≤ a, cot x ≤ a (trong đó a là một hằng số thực).

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải toán hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 202 trang, được biên soạn bởi thầy giáo Lê Quang Xe, hướng dẫn phương pháp giải toán hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Toán 11 phần Đại số và Giải tích chương 1. Phần I ĐẠI SỐ. Chương 1 . HÀM SỐ LƯỢNG GIÁC – PHƯƠNG TRÌNH LƯỢNG GIÁC 2. Bài 0. CÔNG THỨC LƯỢNG GIÁC 2. A Tóm tắt lý thuyết 2. Bài 1. HÀM SỐ LƯỢNG GIÁC 5. A Tóm tắt lý thuyết 5. B Các dạng toán thường gặp 8. + Dạng 1. Tìm tập xác định của hàm số lượng giác 8. + Dạng 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác 12. + Dạng 3. Xét tính chẵn lẻ của hàm số lượng giác 18. C Bài tập trắc nghiệm 21. Bài 2. PHƯƠNG TRÌNH LƯỢNG GIÁC 30. A Phương trình lượng giác cơ bản 30. B Một số kỹ năng giải phương trình lượng giác 32. + Dạng 1. Sử dụng thành thạo cung liên kết 32. + Dạng 2. Ghép cung thích hợp để áp dụng công thức tích thành tổng 41. + Dạng 3. Hạ bậc khi gặp bậc chẵn của sin và cos 46. + Dạng 4. Xác định nhân tử chung để đưa về phương trình tích 50. C Bài tập trắc nghiệm 77. Bài 3. MỘT PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 87. A Một số dạng toán thường gặp 87. + Dạng 1. Giải một số phương trình bậc hai đối với một hàm số lượng giác 87. + Dạng 2. Phương trình bậc nhất đối với sin và cos 105. + Dạng 3. Giải phương trình đẳng cấp 122. + Dạng 4. Giải phương trình đẳng cấp 132. + Dạng 5. Một số phương trình lượng giác khác 139. + Dạng 6. Một số phương trình lượng giác đặc biệt 146. B Bài tập trắc nghiệm 157. Bài 4. BÀI TẬP ÔN CHƯƠNG I 168. A Bài tập tự luận 168. B Bài tập trắc nghiệm 180.
Tài liệu chủ đề phương trình lượng giác có chứa tham số
Tài liệu gồm 31 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác có chứa tham số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. Trong chủ đề này có một số bài toán bắt buộc phải sử dụng đến kiến thức đạo hàm (cuối chương trình Toán 11) và kiến thức khảo sát hàm số (đầu chương trình Toán 12) để giải quyết. Phương pháp giải toán được tác giả trình bày chi tiết thông qua hệ thống ví dụ minh họa cụ thể. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề phương trình lượng giác thường gặp
Tài liệu gồm 44 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác thường gặp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Loại 1: Phương trình thuần nhất với sin x k và cos k x. 2) Loại 2: Phương trình đẳng cấp bậc hai với sin x và cos x. 3) Loại 3: Phương trình đẳng cấp bậc ba với sin x và cos x. 4) Loại 4: Phương trình có chứa sin x cos x. 5) Loại 5: Phương trình có chứa tan x cot x. 6) Loại 6: Một số các phương trình đối xứng tương tự. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Phương trình thuần nhất đối với sin x và cos x. Dạng 2: Phương trình đẳng cấp bậc hai, bậc ba. Dạng 3: Phương trình đối xứng. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề phương trình lượng giác cơ bản
Tài liệu gồm 20 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác cơ bản, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM Loại 1 : Phương trình bậc hai, bậc ba theo một hàm số lượng giác. Với phương trình 2 a kx b kx c sin sin 0 thì ta đặt t kx sin với 1 1 t quy về phương trình bậc hai: 2 a t b t c t kx x 0 sin. Với phương trình 2 a kx b kx c cos cos 0 thì ta đặt t kx cos với 1 1 t quy về phương trình bậc hai: 2 a t b t c t kx x 0 cos. Với phương trình 2 a kx b kx c tan tan 0 thì ta đặt t kx tan quy về phương trình bậc hai: 2 a t b t c t kx x 0 tan. Tương tự cho phương trình ẩn t kx cot. Chú ý: Với phương trình bậc ba theo một hàm số lượng giác thì cách giải tương tự! Loại 2 : Phương trình nhóm nhân tử chung. Với phương trình f x 0 bằng các kĩ thuật phân tích, các công thức lượng giác đã học ta nhóm được nhân tử chung và quy về dạng 0 g x g x h x h x. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.