Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình chứa dấu giá trị tuyệt đối

Nội dung Chuyên đề phương trình chứa dấu giá trị tuyệt đối Bản PDF - Nội dung bài viết Chuyên đề phương trình chứa dấu giá trị tuyệt đối Chuyên đề phương trình chứa dấu giá trị tuyệt đối Tài liệu này bao gồm 19 trang, tóm tắt lý thuyết quan trọng về phương trình chứa dấu giá trị tuyệt đối, phân loại và hướng dẫn cách giải các dạng toán liên quan. Nội dung tài liệu cũng bao gồm một loạt bài tập từ cơ bản đến nâng cao về chuyên đề phương trình này, kèm theo đáp án và lời giải chi tiết. Đặc biệt, tài liệu này được thiết kế để hỗ trợ học sinh trong quá trình học chương trình Đại số lớp 8 chương 4 với chủ đề Bất phương trình bậc nhất một ẩn. Trải qua các bài giảng, học sinh sẽ nhắc lại kiến thức về giá trị tuyệt đối và học cách giải các dạng phương trình chứa dấu giá trị tuyệt đối, bao gồm: Dạng 1: Phương trình |f(x)| = k với k là hằng số không âm. Dạng 2: Phương trình |f(x)| = |g(x)|. Dạng 3: Phương trình |f(x)| = g(x). Ở phần phương pháp giải toán, tài liệu cung cấp các bước chi tiết để giải từng dạng toán, như: Phương pháp giải dạng Toán lớp 1: Phán định giá trị tuyệt đối. Phương pháp giải dạng Toán lớp 2: Giải phương trình dạng |f(x)| = k với k là hằng số không âm. Phương pháp giải dạng Toán lớp 3: Giải phương trình dạng |f(x)| = |g(x)|. Phương pháp giải dạng Toán lớp 4: Giải phương trình dạng |f(x)| = g(x). Trong tài liệu này, học sinh sẽ được trải nghiệm và rèn luyện kỹ năng giải các phương trình chứa dấu giá trị tuyệt đối một cách tự tin và hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định lý Bezout tìm số dư. Dạng 2. Tìm đa thức. Dạng 3. Tổng hợp.
Chuyên đề bất đẳng thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 47 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề bất đẳng thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định nghĩa: A > B ta xét hiệu A – B > 0, chú ý bất đẳng thức a2 >= 0. Dạng 2. Sử dụng bất đẳng thức phụ. Dạng 3. Bất đẳng thức Cosi và Schawrz. Dạng 4. Sắp sếp các biến và bất đẳng thức tam giác. Dạng 5. Tìm điểm rơi của bất đẳng thức Cosi.
Hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thanh Am - Hà Nội
Tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Thanh Am – Hà Nội gồm 11 trang. I. LÝ THUYẾT 1. Đại số: – Phép nhân và phép chia đa thức. – Các hằng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Cộng, trừ các phân thức đại số. 2. Hình học: – Định nghĩa, tính chất, dấu hiệu nhận biết của: hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. CÂU HỎI TRẮC NGHIỆM THAM KHẢO
Đề cương ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề cương ôn tập học kì 1 Toán 8 năm học 2021 – 2022 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội gồm 04 trang, hướng dẫn nội dung Toán 8 học sinh cần ghi nhớ và tuyển chọn các bài toán tự luyện Toán 8 giúp học sinh thử sức để chuẩn bị cho đợt kiểm tra cuối học kì 1 Toán 8 sắp tới. A. PHẦN ĐẠI SỐ I. KIẾN THỨC CƠ BẢN. 1) Các quy tắc nhân, chia đơn thức, đa thức, biết cách chia hai đa thức 1 biến. 2) 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Các quy tắc: cộng, trừ, nhân, chia các phân thức đại số. II. CÁC BÀI TẬP TỰ LUYỆN. B. PHẦN HÌNH HỌC I. KIẾN THỨC CƠ BẢN. II. CÁC DẠNG TOÁN.