Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 10 lần 1 năm 2022 - 2023 trường THPT Hàn Thuyên - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng (KTCL) môn Toán khối 10 lần 1 năm học 2022 – 2023 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi mã đề 135 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án mã đề 135 237 339 441 543 645 747 849. Trích dẫn Đề kiểm tra Toán 10 lần 1 năm 2022 – 2023 trường THPT Hàn Thuyên – Bắc Ninh : + Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng? A. Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác ABCD là hình bình hành. B. Nếu hai tam giác bằng nhau thì hai tam giác đó có diện tích bằng nhau. C. Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD có hai đường chéo vuông góc với nhau. D. Nếu số tự nhiên n có chữ số tận cùng bằng 5 thì số tự nhiên n chia hết cho 5. + An mua bút và vở, biết rằng mỗi chiếc bút có giá 5.000 đồng và mỗi quyển vở có giá 10.000 đồng. Gọi x và y lần lượt là số bút và số vở An mua. Bất phương trình biểu thị mối liên hệ của x và y để số tiền An phải trả không quá 200.000 đồng là: A. 5000 10000 200000 x y. B. 5000 10000 200000 x y. C. x y 200000. D. 5000 10000 200000 x y. + Phát biểu nào dưới đây là một mệnh đề? A. Bạn biết câu nào sai hay không? B. Đề trắc nghiệm Toán dễ thôi mà! C. Chủ tịch Tôn Đức Thắng quê ở An Giang. D. 2016 12 11 x.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 10 lần 1 năm 2020 - 2021 trường THPT Đội Cấn - Vĩnh Phúc
Ngày … tháng 11 năm 2020, trường THPT Đội Cấn, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán 10 lần 1 năm học 2020 – 2021. Đề khảo sát chất lượng Toán 10 lần 1 năm 2020 – 2021 trường THPT Đội Cấn – Vĩnh Phúc mã đề 135 gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 10 lần 1 năm 2020 – 2021 trường THPT Đội Cấn – Vĩnh Phúc : + Lớp 10A có 45 học sinh. Qua khảo sát về sở thích các môn thể thao được biết có 13 học sinh thích đá cầu, 14 học sinh thích bóng chuyền, 15 học sinh thích đá bóng. Có 9 em thích cả đá bóng và đá cầu, 8 em thích cả đá cầu và bóng chuyền, 5 em chỉ thích bóng đá nhưng không thích bóng chuyền. Hỏi lớp có bao nhiêu học sinh không thích cả ba môn nói trên biết có 6 bạn thích cả ba môn thể thao nói trên. + Cho tam giác ABC có trọng tâm là G. I là trung điểm của BC. M, N lần lượt là các điểm được xác định bởi CN = 1/2.BC, 3MA + 4MB = 0. P là giao của AC và MN. Tính tỉ số diện tích của tam giác ANP và NCP. + Trong các câu sau có bao nhiêu câu là mệnh đề? (1) Trời mưa to quá! (2) Bạn có đói không? (3) Con voi to hơn con khỉ. (4) 2^2 > 1^2.
Đề ĐGCB học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán 10 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Xét đa giác đều 105 đỉnh, hỏi có bao nhiêu đa giác đều có đỉnh là đỉnh đa giác đã cho? + Xác định số cách chọn bộ 5 số từ tập 18 số nguyên dương đầu tiên sao cho 2 số bất kỳ trong 5 số được chọn có hiệu số giữa số lớn và số bé lớn hơn hoặc bằng 2. + Cho tập A = {0; 1; 2; 3; 4; 5}. Có bao nhiêu số gồm 5 chữ số của A mà mỗi số có đúng 3 chữ số giống nhau?
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 - 2021 trường chuyên Lê Quý Đôn - BR VT
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đường tròn (O) và dây cung BC cố định không phải là đường kính. Gọi M là trung điểm của đoạn thẳng BC. Một điểm H thay đổi trên đoạn thẳng MB. Đường thẳng qua H, vuông góc với BC cắt đường tròn (O) tại hai điểm A, D sao cho HA > HD. Gọi E, F lần lượt là hình chiếu vuông góc của B,C trên hai cạnh CA, AB. Hai đường thẳng EF, BC cắt nhau tại điểm K. Đường thẳng AK cắt lại đường tròn (O) tại điểm L khác A. 1. Chứng minh rằng bốn điểm A, E, F, L cùng thuộc một đường tròn và ba đường thẳng BE, CF, LM đồng quy. 2. Gọi P là giao điểm của hai đường thẳng BE, FH và Q là giao điểm của hai đường thẳng CF, HE. Chứng minh ba điểm P, Q, K thẳng hàng. 3. Chứng minh rằng khi điểm H thay đổi trên đoạn thẳng MB thì đường thẳng LD luôn đi qua một điểm cố định. + Một nhóm gồm 9 người tham gia buổi offline, biết rằng cử ba người trong nhóm đó thì luôn có hai người không quen nhau. a) Gọi S là số cặp, mỗi cặp gồm hai người trong nhóm quen nhau. Chứng minh S < 20. b) Chứng minh trong nhóm có 4 người nào đó đôi một không quen biết nhau. + Trên bảng ta viết ba số thực không đồng thời bằng nhau. Mỗi lần giả sử trên bảng đang có ba số thực a, b, c ta xoá chúng đi và viết thay vào đó ba số khác là a – b; b – c; c – a. Chứng minh rằng nếu quá trình nói trên tiếp diễn nhiều lần, sẽ có lúc trên bảng thu được một số lớn hơn 2020.
Đề sát hạch Toán 10 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho tam giác có số đo ba cạnh là 3; 4; 5. Khẳng định nào đúng? A. Tam giác đều. B. Tam giác vuông. C. Tam giác cân. D. Tam giác tù. [ads] + Cho biểu thức f(x) = ax^2 + bx + c (a ≠ 0) và ∆ = b^2 – 4ac. Chọn khẳng định đúng? A. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ R. B. Khi ∆ = 0 thì f(x) trái dấu với hệ số a với mọi x ≠ −b/2a. C. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ≠ −b/2a. D. Khi ∆ > 0 thì f(x) luôn trái dấu hệ số a với mọi x ∈ R. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình mx + m – (m + 2)x = m^2 – 2x có tập nghiệm là R. Tính tổng tất cả các phần tử của S.