Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng tổ chức kì thi kiểm tra khảo sát chất lượng môn Toán lớp 11 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng mã đề 143 gồm có 4 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp tự luận theo tỉ lệ điểm 70 : 30. phần trắc nghiệm gồm 35 câu, phần tự luận gồm 3 câu, học sinh có 90 phút để hoàn thành bài thi học kì, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường chuyên Thăng Long – Lâm Đồng : + Vào ngày 13/12/2019, một trung tâm anh văn tổ chức kỳ thi IELTS cho 6 thí sinh bao gồm bốn phân môn LISTENING, READING, WRITING và SPEAKING. Ở phần thi SPEAKING chỉ có một phòng thi và một giám khảo, các thí sinh phải lần lượt thực hiện phần thi của mình. Hỏi có bao nhiêu cách xếp thứ tự thi cho 6 thí sinh tham dự phần thi SPEAKING? + Nhân dịp kỷ niệm 37 năm ngày nhà giáo Việt Nam 20/11, các bạn học sinh lớp 11 Toán trường THPT chuyên Thăng Long – Lâm Đồng bàn bạc và đưa ra quyết định tặng cho 12 giáo viên bộ môn mỗi người một quyển sách. Để chuẩn bị, lớp đã liệt kê ra được 20 quyển sách thích hợp có tựa đề khác nhau. Hỏi có bao nhiêu cách để các bạn lớp 11 Toán chọn quà để tặng cho quý thầy cô mà không có hai thầy cô nào nhận được sách có tựa đề giống nhau? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai đường tròn bất kỳ luôn đồng dạng. B. Hai hình vuông bất kỳ luôn đồng dạng. C. Hai tam giác đều bất kỳ luôn đồng dạng. D. Hai tam giác vuông bất kỳ luôn đồng dạng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với đáy lớn AD. Gọi I, J, K lần lượt là trung điểm của SA, SD và SC. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (IJK) là hình gì? A. Tam giác. B. Hình thang cân. C. Hình thang không cân. D. Hình bình hành. + Trong mặt phẳng, cho hai điểm A và B. Trên đoạn thẳng AB, lấy điểm I sao cho AB = 4AI. Khẳng định nào sau đây đúng? A. Phép vị tự tâm I tỉ số k = 4 biến điểm A thành điểm B. B. Phép vị tự tâm I tỉ số k = −4 biến điểm A thành điểm B. C. Phép vị tự tâm I tỉ số k = 3 biến điểm A thành điểm B. D. Phép vị tự tâm I tỉ số k = −3 biến điểm A thành điểm B. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Hàn Thuyên - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Một hộp chứa 4 quả cầu đỏ, 5 quả cầu xanh và 7 quả cầu vàng. Lấy ngẫu nhiên cùng lúc 4 quả cầu từ hộp đó. Tính xác suất để trong 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng. + Trong mặt phẳng Oxy, cho hai điểm A(1;3), B(3;0) và đường thẳng có phương trình (d): 3x – 2y + 1 = 0. Tìm ảnh (d’) của (d) qua phép tịnh tiến theo véctơ AB. + Cho tứ diện ABCD có M, N, P lần lượt là trung điểm AB, BC, CD. Gọi G là trọng tâm tam giác BCD; AG cắt MP tại I, AN cắt CM tại J. Chứng minh rằng ba điểm D, I, J thẳng hàng.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Gọi X là tập hợp các số tự nhiên gồm 3 chữ số khác nhau được lập nên từ các chữ số 1; 2; 4; 6; 8; 9. Lấy ngẫu nhiên 1 phần tử của X. Tính xác suất để chọn được số chia hết cho 2. + Một đa giác có độ dài các cạnh lập thành một cấp số cộng có công sai bằng 4(cm), cạnh nhỏ nhất bằng 6(cm) và chu vi của đa giác bằng 126(cm). Tính độ dài cạnh lớn nhất của đa giác. + Dùng phương pháp quy nạp, hãy chứng minh: un = 10^n – 2n^3 – n + 2 luôn chia hết cho 3 với mọi số nguyên dương n.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Phú Lâm - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Một bình đựng 10 viên bi chỉ khác nhau về màu, gồm 4 bi màu đỏ và 6 bi màu vàng. Lấy ngẫu nhiên 3 viên bi .Tính xác suất để: a. Lấy được 1 bi đỏ và 2 bi vàng. b. Trong ba viên bi lấy được có ít nhất 1 bi màu vàng. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, H là giao điểm của AC và BD. Gọi M là trung điểm của cạnh SA, N là trung điểm của cạnh SB. a. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh MN song song với mặt phẳng (SCD). + Cho cấp số nhân (un) có công bội q = 1/4, số hạng đầu u1 = 2. Tìm số hạng thứ 2, thứ 10 của cấp số nhân đó?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Lớp 11A14 có 30 học sinh được chia làm 4 tổ: tổ 1 có 6 học sinh, tổ 2 có 7 học sinh, tổ 3 có 8 học sinh, tổ 4 có 9 học sinh. Giáo viên dạy môn Toán của lớp cần chọn ra 10 học sinh để tham dự ngoại khóa.Hỏi có bao nhiêu cách chọn để mỗi tổ có ít nhất 1 học sinh tham dự. + Từ các chữ số của tập hợp M = {1, 2, 3, 4, 5, 6, 7}, người ta tạo ra các số nguyên dương gồm 2 chữ số phân biệt. Tính xác suất để số tạo thành là số lẻ. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n, ta có: 1.4 + 2.7 + … + n(3n + 1) = n(n + 1)^2.