Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng của nguyên lý Dirichlet trong giải toán THCS

Tài liệu gồm 94 trang trình bày những ứng dụng của nguyên lý Dirichlet trong việc giải các bài toán về số học, tổ hợp, chứng minh bất đẳng thức … giúp bồi dưỡng học sinh giỏi môn Toán cấp THCS. Khái quát nội dung tài liệu ứng dụng của nguyên lý Dirichlet trong giải toán THCS: CHỦ ĐỀ 1 : CÁC BÀI TOÁN ỨNG DỤNG NGUYÊN LÝ DIRICHLET TRONG CÁC BÀI TOÁN TỔ HỢP, SỐ HỌC VÀ HÌNH HỌC. Lý thuyết : Nguyên lí Dirichlet, Nguyên lý Dirichlet cơ bản, Nguyên lý Dirichlet tổng quát, Nguyên lí Dirichlet mở rộng, Nguyên lí Dirichlet dạng tập hợp. Áp dụng : + Nguyên lí Dirichlet là một công cụ hiệu quả dùng để chứng minh nhiều kết quả sâu sắc của toán học. + Nguyên lí Dirichlet cũng được áp dụng cho các bài toán của hình học. + Để sử dụng nguyên lý Dirichlet ta phải làm xuất hiện tình huống nhốt “thỏ” vào “chuồng” và thoả mãn các điều kiện: Số “thỏ” phải nhiều hơn số chuồng, “thỏ” phải được nhốt hết vào các “chuồng”, nhưng không bắt buộc chuồng nào cũng phải có thỏ. + Thường thì phương pháp Dirichlet được áp dụng kèm theo phương pháp phản chứng. Ngoài ra nó còn có thể áp dụng với các nguyên lý khác. [ads] CHỦ ĐỀ 2 : ỨNG DỤNG NGUYÊN LÍ DIRICHLET TRONG CHỨNG MINH BẤT ĐẲNG THỨC. + Việc ứng dụng nguyên lí Dirichlet giúp chúng ta chứng minh được một số bài toán bất đẳng thức một cách rất gọn gàng và độc đáo. + Từ nguyên lí Dirichlet có một mệnh đề có ý nghĩa hết sức quan trọng: Trong 3 số thực bất kì a, b, c bao giờ cũng tìm được hai số cùng dấu. Đây là một mệnh đề rất quan trọng, bởi khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán) thì ta có thể áp dụng mệnh đề trên để chứng minh bất đẳng thức.

Nguồn: toanmath.com

Đọc Sách

101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức
Nội dung 101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức Bản PDF - Nội dung bài viết 101 bài toán Parabol và các vấn đề liên quan 101 bài toán Parabol và các vấn đề liên quan Trên mặt phẳng hàm số và đồ thị, tài liệu này tập trung vào việc giải quyết một loạt các bài toán liên quan đến hàm số bậc hai, đặc biệt là parabol đơn giản (ở dạng y = ax^2) có đỉnh tại gốc tọa độ O. Nội dung bao gồm khảo sát sự thay đổi của hàm số, vẽ đồ thị parabol, xác định vị trí tương đối giữa parabol và đường thẳng, một số bài toán kết hợp yếu tố lượng giác và hình học giải tích. Mục tiêu chính của tài liệu là hỗ trợ quá trình dạy và học, chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT, cung cấp nền tảng cho tư duy hàm số và hình học giải tích ở cấp trung học phổ thông. Nội dung chi tiết của tài liệu bao gồm: Sự biến thiên của hàm số bậc hai Vẽ đồ thị parabol đơn giản Xác định vị trí tương đối giữa đường thẳng và parabol Các bài toán kết hợp yếu tố hình học Bài toán có nhiều cách giải khác nhau Tài liệu không chỉ dừng lại ở mức độ cơ bản mà còn mở rộng kiến thức, khuyến khích sự sáng tạo và đột phá trong các vấn đề toán học và ứng dụng chúng trong các môn khoa học tự nhiên. Mong rằng độc giả sẽ thấy hứng thú và thú vị khi nghiên cứu về đồ thị parabol và các vấn đề liên quan trong tài liệu này.
123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức
Nội dung 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Bản PDF - Nội dung bài viết Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Trong lĩnh vực Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, hàm số và đồ thị là những dạng toán cơ bản nhưng rất thú vị. Chúng có phạm vi rộng lớn, liên kết chặt chẽ với nhiều phần khác của toán học sơ cấp và hiện đại. Ở Việt Nam, kiến thức về hàm số và đồ thị đóng vai trò quan trọng trong giáo dục, được giảng dạy trong chương trình sách giáo khoa từ lớp 7, tiếp tục qua các lớp 9, 10, 11, 12 cùng với các kiến thức liên quan. Các kỹ năng về hàm số, đồ thị được rèn luyện đều đặn, bài bản và có hệ thống để hữu ích không chỉ trong môn Toán mà còn phục vụ cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học. Trong chương trình Đại số lớp 9 THCS, hàm số và đồ thị đóng vai trò quan trọng trong các đề thi kiểm tra, đề thi tuyển sinh lớp 10 THPT và các trường chuyên. Các bài toán về hàm số và đồ thị tạo cơ sở cho kiến thức chính trong các lớp 10, 12, bao gồm cả hàm số bậc cao và bài toán hình học giải tích. Trong tác phẩm về hàm số và đồ thị, tác giả tập trung vào các bài toán khảo sát biến thiên, vẽ đồ thị của hàm số bậc nhất (đường thẳng), vị trí tương đối giữa các đường thẳng, cũng như vị trí tương đối giữa đường thẳng và đường cong. Ngoài ra, có những bài toán kết nối với yếu tố lượng giác và hình học giải tích. Đồng thời, tác giả cố gắng mở rộng, nâng cao từng bài toán theo nội dung chính về hàm số bậc THPT. Điều này giúp phát triển tư duy hàm số, tư duy hình học giải tích cho học sinh THCS và tạo cơ sở cho các kỳ thi đầy cam go như kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia. Tóm lại, việc nghiên cứu đường thẳng và hàm số không chỉ giúp học sinh hiểu sâu hơn về toán học mà còn giúp họ áp dụng kiến thức vào các môn khoa học khác một cách sáng tạo và linh hoạt.
Chuyên đề bất đẳng thức
Nội dung Chuyên đề bất đẳng thức Bản PDF - Nội dung bài viết Chuyên đề bất đẳng thức Chuyên đề bất đẳng thức Tài liệu này bao gồm 28 trang chứa các phương pháp chứng minh bất đẳng thức và ví dụ về việc áp dụng bất đẳng thức trong các trường hợp cụ thể. Những phương pháp được trình bày trong tài liệu này giúp độc giả hiểu rõ hơn về cách chứng minh và áp dụng bất đẳng thức trong các bài toán. Với nhiều ví dụ minh họa và các phần trình bày chi tiết, tài liệu này sẽ giúp cho việc học và nghiên cứu về bất đẳng thức trở nên dễ dàng và thuận lợi hơn.
Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa
Nội dung Tài liệu ôn thi tuyển sinh vào môn Toán Trần Quốc Nghĩa Bản PDF - Nội dung bài viết Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi tuyển sinh môn Toán Trần Quốc Nghĩa Tài liệu ôn thi này bao gồm 160 trang với nội dung chi tiết và cụ thể để giúp các học sinh chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Tài liệu được chia thành các phần sau: Phần 1: BÀI TẬP THEO CHUYÊN ĐỀ - Vấn đề 1: CĂN THỨC - Vấn đề 2: HÀM SỐ VÀ ĐỒ THỊ + I. Hàm số bậc nhất + II. Hàm số bậc hai + III. Sự tương giao giữa parabol (P) và đường thẳng (d) - Vấn đề 3: PHƯƠNG TRÌNH + I. Phương trình bậc nhất + II. Phương trình bậc hai + III. Phương trình trùng phương + IV. Phương trình chứa căn thức và trị tuyệt đối + V. Phương trình chứa tham số + VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao - Vấn đề 4: HỆ PHƯƠNG TRÌNH + I. Giải hệ phương trình + II. Hệ phương trình chứa tham số - Vấn đề 5: BẤT PHƯƠNG TRÌNH - Vấn đề 6: GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HỆ THỨC LẬP PT – HPT - Vấn đề 7: HÌNH HỌC + I. Hệ thức lượng trong tam giác + II. Đường tròn + III. Hình trụ – Hình nón – Hình cầu - Vấn đề 8: BÀI TẬP TỔNG HỢP Phần 2: ĐỀ THI BÌNH DƯƠNG Phần 3: ĐỀ THI TPHCM Phần 4: ĐỀ THI CÁC TỈNH NĂM 2015 – 2016 Tài liệu này sẽ giúp học sinh ôn tập hiệu quả và tự tin chuẩn bị cho kỳ thi tuyển sinh vào Trần Quốc Nghĩa. Mong rằng thông tin trên sẽ hữu ích cho tất cả các bạn học sinh đang hướng tới mục tiêu lớn của mình.