Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các hằng đẳng thức đáng nhớ và ứng dụng

Tài liệu gồm 59 trang, tuyển tập các hằng đẳng thức đáng nhớ và ứng dụng trong giải toán, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số. A. Một số kiến thức cần nhớ 1. Nhắc lại những hằng đẳng thức đáng nhớ. + Bình phương của một tổng. + Bình phương của một hiệu. + Hiệu của hai bình phương. + Lập phương của tổng. + Lập phương của hiệu. + Tổng hai lập phương. + Hiệu hai lập phương: 2. Một số hằng đẳng thức tổng quát. 3. Nhị thức Newton. B. Một số ví dụ minh họa Với các hẳng đẳng thức đáng nhớ cũng như các hẳng đẳng thức mở rộng ta có thể áp dụng khi giải một số dạng bài tập toán như sau: + Áp dụng trực tiếp các hằng đẳng thức để thực hiện tính phép tính, tính giá trị các biểu thức số. + Áp dụng các hằng đẳng thức để thu gọn biểu thức và chứng minh các đẳng thức. + Áp dụng các hằng đẳng thức để giải bài toán tìm giá trị của biến. Xác định hệ số của đa thức. + Bài toán tính giá trị biểu thức với các biến có điều kiện. + Chứng minh bất đẳng thức và bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức đại số. + Áp dụng các hằng đẳng thức để giải một số bài toán số học và tổ hợp. C. Một số bài tập tự luyện D. Hướng dẫn giải

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quy đồng mẫu thức nhiều phân thức
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề quy đồng mẫu thức nhiều phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT Để quy đồng mẫu thức nhiều phân thức, ta thực hiện các bước sau đây: + Bước 1. Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung. + Bước 2. Tìm nhân tử phụ của mỗi mẫu thức. + Bước 3. Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN + Dạng 1: Tìm mẫu thức chung của các phân thức. + Dạng 2: Quy đồng các mẫu thức.
Chuyên đề rút gọn phân thức
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề rút gọn phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT Để rút gọn phân thức cho trước ta làm như sau: + Bước 1. Sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. + Bước 2. Sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Rút gọn phân thức. + Bước 1. Phân tích tử thức và mẫu thức thành nhân tử. + Bước 2. Rút gọn bằng cách triệt tiêu nhân tử chung. Dạng 2 . Chứng minh đẳng thức. Thực hiện tương tự các bước chứng minh đẳng thức đã học trong chuyên đề 1 và chuyên đề 2. Dạng 3 . Rút gọn biểu thức với điều kiện cho trước. + Bước 1. Sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. + Bước 2. Sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho. Dạng 4 . Chứng minh biểu thức không phụ thuộc vào biến x. + Bước 1. Sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. + Bước 2. Sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho sao cho không còn các ẩn.
Chuyên đề tính chất cơ bản của phân thức
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất cơ bản của phân thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Tính chất cơ bản của phân thức. 2. Quy tắc đối dấu. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm đa thức thỏa mãn đẳng thức cho trước. Bước 1. Phân tích tử thức và mẫu thức thành nhân tù ở hai vế. Bước 2. Triệt tiêu các nhân tử chung và rút ra đa thức cần tìm. Dạng 2 : Biến đổi phân thức theo yêu cầu của đề bài. Bước 1. Phân tích tử thức và mẫu thức thành nhân tử hoặc lựa chọn tử thức (hay mẫu thức) thích hợp tùy theo yêu cầu đề bài. Bước 2. Sử dụng tính chất cơ bản của phân thức để đưa về phân thức mới thỏa mãn yêu cầu. Dạng 3 : Tính giá trị của phân thức. Bước 1. Phân tích tử thức và mẫu thức của mỗi phân thức thành nhân tử. Bước 2. Rút gọn từng phân thức. Bước 3. Thay giá trị của biến vào phân thức và tính. Dạng 4 : Chứng minh cặp phân thức bằng nhau. Bước 1. Phân tích từ thức và mẫu thức của mỗi phân thức thành nhân tử. Bước 2. Rút gọn từng phân thức, từ đó suy ra điều phải chứng minh. Dạng 5 : Toán nâng cao.
Chuyên đề phân thức đại số
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Tìm điều kiện để phân thức có nghĩa. Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 2 . Chứng minh một phân thức luôn có nghĩa. Bước 1. Lựa chọn 1 trong 3 cách biến đổi thường dùng sau: + Cách 1. Biến đổi vế trái thành vế phải. + Cách 2. Biến đổi vế phải thành vế trái. + Cách 3. Biến đổi đồng thời hai vế. Bước 2. Phân tích tử thức và mẫu thức thành nhân tử. Bước 3. Rút gọn bằng cách triệt tiêu nhân từ chung và sử dụng định nghĩa hai phân thức bằng nhau nếu cần, từ đó suy ra điều phải chứng minh. Dạng 3 . Tìm đa thức trong đẳng thức. Bước 1. Phân tích tử thức và mẫu thức thành nhân tử ở hai vế. Bước 2. Triệt tiêu các nhân tử chung và rút ra đa thức cần tìm. Dạng 4 . Tìm x để giá trị phân thức bằng 0. Đặt điều kiện cho mẫu khác 0, rút ra điều kiện của x. Nhân mẫu thức với 0 vế phải để triệt tiêu mẫu. Cho tử bằng 0 để tìm giá trị của x so sánh với điều kiện kết luận giá trị của x. Dạng 5 . Chứng minh đẳng thức có điều kiện. Bước 1. Xuất phát từ điều phải chứng minh, áp dụng tính chất của hai phân thức bằng nhau. Bước 2. Thu gọn biểu thức và dựa vào điều kiện đề bài cho để lập luận.