Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 7 môn Toán năm 2020 2021 trường THCS Trung Nguyên Vĩnh Phúc

Nội dung Đề thi HSG lớp 7 môn Toán năm 2020 2021 trường THCS Trung Nguyên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG lớp 7 môn Toán năm 2020-2021 trường THCS Trung Nguyên Vĩnh Phúc Đề thi HSG lớp 7 môn Toán năm 2020-2021 trường THCS Trung Nguyên Vĩnh Phúc Ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020-2021. Đề thi gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài 120 phút, kèm theo đáp án và lời giải chi tiết. Trích dẫn đề thi Toán lớp 7 năm 2020-2021 trường THCS Trung Nguyên Vĩnh Phúc: 1. Cho góc xOy bằng 60 độ. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox, kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B, kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. 2. Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và ∠AMC = 135 độ. Tính MC. 3. Từ 200 số tự nhiên 1, 2, 3,..., 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k. Đề thi gồm các câu hỏi đa dạng, từ việc chứng minh đẳng thức đến tính toán số học, đòi hỏi học sinh phải có kiến thức vững chắc và khả năng suy luận logic tốt. Việc giải quyết các bài toán này không chỉ giúp học sinh rèn luyện kỹ năng Toán mà còn phát triển khả năng tư duy logic và sáng tạo.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Cho đa thức A(x) = ax3 + bx2 + cx + d với a là số nguyên dương, biết: A(5) – A(4) = 2022. Chứng minh A(7) – A(2) là hợp số. + Trong một đợt phát động thu kế hoạch nhỏ, ba khối 6, 7, 8 thu được 2125kg giấy vụn. Trung bình mỗi học sinh khối 6, 7, 8 theo thứ tự thu được 1,5kg; 2kg; 2,5kg. Số học sinh khối 6 và khối 7 tỉ lệ với 3 và 2, số học sinh khối 7 và khối 8 tỉ lệ với 5 và 4. Tính số học sinh mỗi khối. + Cho tam giác ABC có A < 90°. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và MCN 1) Chứng minh rằng: AMC = ABN 2) Chứng minh: BN vuông góc CM 3) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Một bể nước dạng hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao tỉ lệ với 1: 2: 4. Tổng diện tích sáu mặt của bể nước là 112m2. Tính thể tích bể nước. + Một bể bơi được xây dựng thành hai khu vực với độ sâu khác nhau cho trẻ em và người lớn và các kích thước của lòng bể được cho như hình vẽ. Hỏi sau bao lâu bể bơi được bơm đầy nước, biết cứ mỗi phút máy bơm được vào bể 500 lít nước. + Cho tam giác ABC nhọn có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Qua B kẻ đường thẳng song song với CD cắt đường thẳng AC tại E. a. Chứng minh rằng BE = CD; ED = BC. b. Gọi P, Q lần lượt là trung điểm của BE, CD. Chứng minh rằng A là trung điểm của PQ. c. Gọi M là điểm bất kỳ nằm trong tam giác ABC. Xác định vị trí của M để biểu thức MA.BC + MB.AC + MC.AB đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC cân tại A. Trên tia đối của các tia BC và CB lấy theo thứ tự hai điểm D và E sao cho DB = CE. Gọi M là trung điểm của BC, từ B và C kẻ BH và CK lần lượt vuông góc với AD và AE. Chứng minh: a) Tam giác ADE cân. b) AM là tia phân giác của góc DAE. c) BK = CH. d) Ba đường thẳng AM, BH, CK cùng đi qua một điểm. + Chứng minh rằng: nếu x và y là các số nguyên sao cho 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17. + Cho p là một số nguyên tố lớn hơn 3. Chứng minh (p – 1)(p + 1) chia hết cho 24. Tìm các giá trị nguyên của x để biểu thức C 4 7 2 x x có giá trị nguyên.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hương Khê - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hương Khê – Hà Tĩnh : + Một hộp sữa có dạng hình hộp chữ nhật với các kích thước đáy dưới là 4 cm, 5 cm và chiều cao là 12 cm. Hỏi hộp sữa đựng bao nhiêu mililit sữa? (biết hộp sữa đựng đầy và 1cm3 = 1ml). + Một bánh răng có 40 răng, quay mỗi phút được 15 vòng, nó khớp với một bánh răng thứ hai. Giả sử bánh răng thứ hai quay một phút được 20 vòng. Hỏi bánh răng thứ hai có bao nhiêu răng? + Một hộp đựng 60 viên bi trong đó có 15 viên bi màu xanh, 15 viên bi màu đỏ, 15 viên bi màu vàng và 15 viên bi màu trắng. Cần phải lấy ra ít nhất bao nhiêu viên bi (mà không nhìn trước) để chắc chắn trong số đó có không ít hơn 8 viên bi cùng màu?