Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình chữ nhật

Nội dung Chuyên đề hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề hình chữ nhậtI. Tóm tắt lý thuyếtII. Bài tập và các dạng toán Chuyên đề hình chữ nhật Tài liệu này bao gồm 31 trang, cung cấp tóm tắt lý thuyết cần thiết về hình chữ nhật, phân dạng và hướng dẫn giải các dạng toán liên quan. Bên cạnh đó, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chuyên đề hình chữ nhật, kèm theo đáp án và lời giải chi tiết. Đây là nguồn tư liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hình chữ nhật là tứ giác có bốn góc vuông, đồng thời có tất cả các tính chất của hình bình hành và hình thang cân. Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm. Để nhận biết hình chữ nhật, có thể dựa vào ba góc vuông, một góc vuông hoặc các đường chéo bằng nhau. Ngoài ra, tài liệu cũng áp dụng các tính chất của hình chữ nhật vào tam giác vuông. II. Bài tập và các dạng toán Trên tài liệu cung cấp các dạng bài tập minh họa và áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Ngoài ra, có các bài tập nâng cao về đường trung tuyến của tam giác vuông và đường thẳng song song. Phần phiếu tự luyện cũng tập trung vào chứng minh tứ giác là hình chữ nhật, tính chất đường trung tuyến của tam giác vuông và tìm điều kiện để tứ giác là hình chữ nhật. Đây là tài liệu hữu ích để học sinh nắm vững kiến thức về hình chữ nhật và phát triển tư duy trong việc giải các bài toán hình học.

Nguồn: sytu.vn

Đọc Sách

Đề cương giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS thị trấn Văn Điển - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS thị trấn Văn Điển, huyện Thanh Trì, thành phố Hà Nội.
Đề cương ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Thành Công - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội. I. Nội dung ôn tập 1. Đại số: Từ đầu chương 1 đến hết bài “Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp”. 2. Hình học: Từ đầu chương 1 đến hết bài “Hình bình hành”. II. Một số đề tham khảo
Đề cương ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. I. Phần 1 : Nội dung kiến thức cần ôn tập. 1. Các đơn vị kiến thức đã học từ tuần 01 đến hết tuần 06. 2. Một số câu hỏi trọng tâm. Câu 1. Nêu các quy tắc nhân đơn thức với đa thức, đa thức với đa thức. Câu 2. Phát biểu và nêu công thức 7 hằng đẳng thức đáng nhớ. Câu 3. Nêu định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. Câu 4. Nêu định nghĩa hình thang, hình thang cân, tính chất và dấu hiệu nhận biết hình thang cân. Câu 5. Nêu định nghĩa, tính chất đường trung bình của tam giác, hình thang. Câu 6. Nêu định nghĩa, tính chất và dấu hiệu nhận biết hình bình hành. Câu 7. Nêu định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. II. Phần 2 : Một số dạng bài tập minh họa. A. Trắc nghiệm. B. Tự luận.
Hướng dẫn ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 THCS Thanh Am - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thanh Am, quận Long Biên, thành phố Hà Nội. I. Nội dung ôn tập 1.1. Đại số. – Quy tắc nhân đa thức. – Các hẳng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Chia đa thức một biến đã sắp xếp. 1.2. Hình học. – Định lý tổng các góc trong một tứ giác. – Định nghĩa, tính chất, dấu hiệu nhận biết của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật. – Định nghĩa, tính chất đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. Một số bài tập cụ thể