Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên

Nội dung Phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên Bản PDF - Nội dung bài viết Phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên Phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên Tài liệu này được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, với mục đích giúp các em học sinh ôn tập và bổ sung kiến thức về số tự nhiên theo chương trình Số học 6. Tài liệu bao gồm 75 trang và bao quát nhiều dạng toán chuyên đề có thể gặp trong học tập hàng ngày. Bài 1. Tập hợp Trong bài này, chúng ta sẽ tìm hiểu về cách viết và định nghĩa một tập hợp, sử dụng kí hiệu và minh họa tập hợp bằng hình vẽ. Bài 2. Tập hợp các số tự nhiên Chúng ta sẽ làm quen với các dạng bài tập về số liền sau, số liền trước, tìm các số thỏa mãn điều kiện và biểu diễn trên tia số các số tự nhiên. Bài 3. Ghi số tự nhiên Ở đây, chúng ta sẽ thực hành ghi và viết các số tự nhiên, tính số lượng các số có n chữ số, sử dụng công thức đếm và đọc các số bằng chữ số La Mã. Bài 4. Số phần tử của một tập hợp. Tập hợp con Chúng ta sẽ học cách viết tập hợp bằng cách liệt kê các phần tử theo tính chất đặc trưng của chúng, tìm số phần tử của một tập hợp và viết tất cả các tập hợp con của một tập cho trước. Bài 5. Phép cộng và phép nhân Trong bài này, chúng ta sẽ áp dụng các phép cộng và nhân, sử dụng tính chất của chúng để tính nhanh, tìm số chưa biết trong một đẳng thức và so sánh các tổng hoặc tích mà không cần tính giá trị cụ thể. Bài 6. Phép trừ và phép chia Chúng ta sẽ thực hành phép trừ và chia, áp dụng tính chất các phép tính để tính nhanh và tìm số chửa biết trong một đẳng thức. Bài 7. Lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số Trong bài này, chúng ta sẽ học cách viết gọn một tích bằng cách sử dụng lũy thừa, nhân hai lũy thừa cùng cơ số. Bài 8. Chia hai lũy thừa cùng cơ số Chúng ta sẽ tìm kết quả phép tính dưới dạng một lũy thừa, tính kết quả phép chia hai lũy thừa bằng hai cách và tìm số mũ của một lũy thừa trong một đẳng thức. Bài 9. Thứ tự thực hiện các phép tính Trong bài này, chúng ta sẽ thực hiện các phép tính theo thứ tự đã quy định, tìm số chưa biết trong đẳng thức hoặc sơ đồ và so sánh giá trị của hai biểu thức đại số. Bài 10. Tính chất chia hết của một tổng Chúng ta sẽ xét tính chia hết của một tổng hoặc một hiệu, tìm điều kiện của một số hạng để tổng hoặc hiệu chia hết cho một số nào đó và xét tính chia hết của một tích.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề so sánh
Tài liệu gồm 105 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT CHỦ ĐỀ 1: SO SÁNH LŨY THỪA. I. KIẾN THỨC CẦN NHỚ. II. CÁC DẠNG TOÁN. Dạng 1: So sánh hai số lũy thừa. Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). Dạng 3: Từ việc so sánh lũy thừa tìm cơ số (số mũ) chưa biết. Dạng 4: Một số bài toán khác. CHỦ ĐỀ 2: SO SÁNH PHÂN SỐ. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG TOÁN. Phương pháp 1: Quy đồng mẫu dương. Phương pháp 2: Quy đồng tử dương. Phương pháp 3: Tích chéo với các mẫu dương. Phương pháp 4: Dùng số hoặc phân số làm trung gian. Phương pháp 5: Dùng tính chất. Phương pháp 6: Đổi phân số lớn hơn đơn vị ra hỗn số để so sánh. III. CÁC BÀI TẬP TỔNG HỢP. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ HSG TOÁN 6
Chuyên đề chữ số tận cùng
Tài liệu gồm 45 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề chữ số tận cùng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT. 1. Tìm một chữ số tận cùng. Tính chất 1: + Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1. + Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 6. Tính chất 2: + Một số tự nhiên bất kì khi nâng lên lũy thừa bậc 4n + 1 thì chữ số tận cùng vẫn không thay đổi. + Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng. Tính chất 3: + Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 7; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 3. + Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 8; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 2. + Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9 khi nâng lên lũy thừa bậc 4 3 n sẽ không thay đổi chữ số tận cùng. 2. Tìm hai chữ số tận cùng. Việc tìm hai chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 100. 3. Tìm ba chữ số tận cùng trở lên. Việc tìm ba chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 1000. II. CÁC DẠNG TOÁN. Dạng 1: Tìm một chữ số tận cùng. Dạng 2: Tìm hai chữ số tận cùng. Dạng 3: Tìm ba chữ số tận cùng. Dạng 4: Vận dụng chứng minh chia hết, chia có dư. Dạng 5: Vận dụng chữ số tận cùng vào bài toán chính phương. III. BÀI TẬP. B. BÀI TOÁN TRONG ĐỀ THI HSG VÀ CHUYÊN TOÁN 6
Tóm tắt lý thuyết và bài tập trắc nghiệm xác suất thực nghiệm
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề xác suất thực nghiệm, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khả năng xảy ra của một sự kiện. Để nói về khả năng xảy ra của một sự kiện, ta dùng một con số có giá trị từ 0 đến 1. Một sự kiện không xảy ra, có khả năng xảy ra bằng 0. Một sự kiện chắc chắn xảy ra, có khả năng xảy ra bằng 1. 2. Xác suất thực nghiệm. Thực hiện lặp đi lặp lại một hoạt động nào đó n lần. Gọi n A là số lần sự kiện A xảy ra trong n lần đó. Tỉ số n A n được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm dữ liệu và thu thập dữ liệu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề dữ liệu và thu thập dữ liệu, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Dữ liệu. Các thông tin thu được gọi là dữ liệu. trong các dữ liệu ấy, có dữ liệu là số (số liệu), có dữ liệu không phải là số. 2. Thu thập dữ liệu thống kê. Có nhiều cách để thu thập dữ liệu như quan sát, làm thí nghiệm, lập phiếu hỏi … hay thu thập từ những nguồn có sẵn như sách báo, trang web. B. BÀI TẬP TRẮC NGHIỆM