Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề phép toán cộng, trừ, nhân, chia phân số

Tài liệu gồm 22 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép toán cộng, trừ, nhân, chia phân số, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Phép cộng các phân số. – Muốn cộng hai phân số có cùng mẫu số, ta cộng các tử và giữ nguyên mẫu a b a b m m m. – Muốn cộng hai phân số không cùng mẫu, ta viết các phân số đó dưới dạng hai phân số có cùng một mẫu rồi cộng các tử và giữa nguyên mẫu chung. Dạng 2 . Phép trừ các phân số. Muốn trừ một phân số cho một phân số, ta cộng số bị trừ với số đối của số trừ. Dạng 3 . Phép nhân, chia các phân số. – Rút gọn (nếu có thể) các phân số trong đề bài. – Áp dụng quy tắc nhân, chia phân số. – Áp dụng các tính chất cơ bản của phép nhân phân số. Dạng 4 . Viết một phân số dưới dạng tích, thương của hai phân số. a) Để viết một phân số dưới dạng tích hai phân số, ta làm như sau: + Bước 1. Rút gọn các phân số (nếu có thể). + Bước 2. Viết các số nguyên ở tử và mẫu của phân số sau khi rút gọn dưới dạng tích của hai số nguyên. + Bước 3. Lập các phân số có tử và mẫu chọn trong các số nguyên ở bước trên. b) Viết một phân số dưới dạng thương của hai phân số thỏa mãn điều kiện cho trước. Phương pháp giải: + Viết tử và mẫu của phân số dưới dạng tích của hai số nguyên. + Lập các phân số có tử và mẫu chọn trong các số nguyên đó sao cho chúng thỏa mãn điều kiện cho trước. + Chuyển phép nhân phân số thành phép chia cho số nghịch đảo. Dạng 5 . Bài toán tổng hợp. * Tính giá trị của biểu thức: Để tính giá trị của biểu thức được đúng và hợp lí, cần chú ý: • Thứ tự thực hiện các phép tính: Đối với biểu thức không chứa dấu ngoặc: Lũy thừa → Phép nhân, chia → Phép cộng và phép trừ. Đối với biểu thức có chứa dấu ngoặc: () → [] → {}. • Các tính chất cơ bản của phép nhân phân số. * Tìm x: Ta cần xác định quan hệ giữa các số trong phép nhân, phép chia. • Muốn tìm thừa số chưa biết, ta lấy tích chia cho thừa số đã biết. • Muốn tìm số bị chia, ta lấy thương nhân với số chia. • Muốn tìm số chia, ta lấy số bị chia chia cho số chia.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tập hợp các số nguyên
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tập hợp các số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Nhận biết được số nguyên âm, tập hợp các số nguyên. + Nhận biết được số đối của một số nguyên. + Nhận biết được thứ tự trong tập hợp các số nguyên. + Nhận biết được ý nghĩa của số nguyên âm trong một số bài toán thực tiễn. Kĩ năng: + Biểu diễn được số nguyên trên trục số. + So sánh được hai số nguyên cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định số nguyên. Biểu diễn số nguyên trên trục số. Dạng 2 : So sánh các số nguyên. Khi biểu diễn trên trục số (nằm ngang) điểm a nằm bên trái điểm b thì số nguyên a nhỏ hơn số nguyên b. Số nguyên b gọi là số liền sau của số nguyên a nếu a < b và không có số nguyên nào nằm giữa a và b; a cũng được gọi là số liền trước của số b. Dạng 3 : Giá trị tuyệt đối của số nguyên. Giá trị tuyệt đối của một số nguyên a là khoảng cách từ điểm a đến điểm 0 trên trục số. Một số tính chất: 1) Giá trị tuyệt đối của số 0 là số 0. 2) Giá trị tuyệt đối của một số nguyên dương là chính nó. 3) Giá trị tuyệt đối của một số nguyên âm là số đối của nó. 4) Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì lớn hơn. 5) Hai số đối nhau có giá trị tuyệt đối bằng nhau.
Chuyên đề bội chung và bội chung nhỏ nhất
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội chung và bội chung nhỏ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu khái niệm bội chung, bội chung nhỏ nhất của hai hay nhiều số. + Nhận biết được mối quan hệ giữa ước chung lớn nhất và bội chung nhỏ nhất. Kĩ năng: + Biết cách tìm bội chung của hai hay nhiều số bằng cách phân tích các số ra thừa số nguyên tố. + Biết tìm bội chung thông qua tìm bội chung nhỏ nhất. + Tìm được bội chung nhỏ nhất của hai số khi biết ước chung lớn nhất của chúng. + Thực hành vận dụng giải một số dạng toán liên quan đến bội chung và bội chung nhỏ nhất. I. LÍ THUYẾT TRỌNG TÂM 1. Bội chung: Bội chung của hai hay nhiều số là bội của tất cả các số đó. 2. Bội chung nhỏ nhất: Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. 3. Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố: Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: + Bước 1. Phân tích mỗi số ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung và riêng. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. 4. Cách tìm bội chung thông qua tìm BCNN: Để tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm bội chung và bội chung nhỏ nhất của các số cho trước. Dạng 2 : Quan hệ giữa ước chung lớn nhất và bội chung nhỏ nhất. Tích của hai số bằng tích của ƯCLN và BCNN của chúng.
Chuyên đề ước chung và ước chung lớn nhất
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước chung và ước chung lớn nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức : + Hiểu được khái niệm ước chung, ước chung lớn nhất, và khái niệm các số nguyên tố cùng nhau. + Nhận biết được giao của hai tập hợp. + Nhận biết được quan hệ giữa ước chung và ước chung lớn nhất. Kĩ năng : + Xác định được ước chung và ước chung lớn nhất của hai hay nhiều số tự nhiên lớn hơn 1. + Biết cách tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố. + Tìm được tập hợp các ước chung của các số đã cho thông qua tìm ước chung lớn nhất của chúng. + Vận dụng giải các dạng toán tìm ước chung và ước chung lớn nhất. + Chứng minh được hai hay nhiều số nguyên tố cùng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm ước chung. Tìm ước chung của hai số a và b: + Bước 1. + Bước 2. Dạng 2 : Tìm ước chung lớn nhất. Tìm ước chung lớn nhất của hai số a và b: – Cách 1: Tìm ƯC(a;b), chọn số lớn nhất trong tập hợp đó. – Cách 2: + Bước 1. Phân tích a và b ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN cần tìm. Tìm ƯC(a;b) thông qua ước chung lớn nhất: + Bước 1. Tìm ƯCLN(a;b). + Bước 2. Liệt kê các ước của ƯCLN. Dạng 3 : Bài toán về tập hợp. Giao của hai tập hợp A và B là một tập hợp gồm các phần tử chung của hai tập đó. Dạng 4 : Chứng minh hai hay nhiều số là các số nguyên tố cùng nhau. Chứng minh a và b là hai số nguyên tố cùng nhau: + Bước 1. Giả sử d = ƯC(a;b). Suy ra a d và b d. + Bước 2. Áp dụng tính chất chia hết của một tổng (hiệu) để chứng minh d = 1. Suy ra ƯCLN(a;b) = 1. Kết luận a và b là hai số nguyên tố cùng nhau.
Chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Nhận biết được khái niệm ước, bội, số nguyên tố và hợp số. + Nắm được cách phân tích một số ra thừa số nguyên tố. Kĩ năng: + Phân tích được một số tự nhiên bất kì ra thừa số nguyên tố, biết dùng lũy thừa để viết gọn dạng phân tích. + Biết cách xác định tập hợp các ước, các bội của một số tự nhiên. + Nhận biết được một số hoặc một biểu thức là số nguyên tố hay hợp số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Bài toán về ước và bội. + Cách tìm bội của a (a khác 0): Lấy a nhân lần lượt với 0; 1; 2; 3; …. + Cách tìm ước của b (b > 1): Lấy b chia cho các số tự nhiên từ 1 đến b để xét xem b chia hết cho những số nào rồi kết luận. Dạng 2 : Số nguyên tố và hợp số. Dạng 3 : Phân tích một số ra thừa số nguyên tố.