Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lượng giác và phương trình lượng giác Toán 11 GDPT 2018

Tài liệu gồm 200 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề hàm số lượng giác và phương trình lượng giác môn Toán 11 chương trình GDPT 2018. Bài 1 . Góc lượng giác. Giá trị lượng giác của góc lượng giác 2. A Góc lượng giác 2. 1. Góc hình học và số đo của chúng 2. 2. Góc lượng giác và số đo của chúng 2. B Giá trị lượng giác của góc lượng giác 2. 1. Đường tròn lượng giác 2. 2. Giá trị lượng giác của góc lượng giác 3. C Giá trị lượng giác của các góc có liên quan đặc biệt 3. D Các dạng toán thường gặp 4. + Dạng 1. Chuyển đổi đơn vị độ – rađian 4. 1. Ví dụ mẫu 4. 2. Bài tập tự luyện 6. 3. Câu hỏi trắc nghiệm 7. + Dạng 2. Độ dài của một cung tròn 9. 1. Ví dụ mẫu 9. 2. Bài tập tự luyện 10. 3. Câu hỏi trắc nghiệm 12. + Dạng 3. Số đo của một góc lượng giác 13. 1. Ví dụ mẫu 14. 2. Bài tập tự luyện 15. 3. Câu hỏi trắc nghiệm 17. + Dạng 4. Biểu diễn góc lượng giác trên đường tròn lượng giác 18. 1. Ví dụ mẫu 19. 2. Bài tập tự luyện 22. 3. Câu hỏi trắc nghiệm 28. + Dạng 5. Tính giá trị lượng giác của góc lượng giác bằng định nghĩa và xét dấu của các giá trị lượng giác 31. 1. Ví dụ mẫu 32. 2. Bài tập tự luyện 34. 3. Câu hỏi trắc nghiệm 36. + Dạng 6. Cho một giá trị lượng giác của góc, tính các giá trị còn lại hay một biểu thức lượng giác 37. 1. Ví dụ mẫu 37. 2. Bài tập tự luyện 39. 3. Câu hỏi trắc nghiệm 41. + Dạng 7. Giá trị lượng giác của các góc có liên quan đặc biệt 43. 1. Ví dụ mẫu 44. 2. Bài tập tự luyện 46. 3. Câu hỏi trắc nghiệm 49. + Dạng 8. Chứng minh đẳng thức lượng giác 52. 1. Ví dụ mẫu 52. 2. Bài tập tự luyện 52. 3. Câu hỏi trắc nghiệm 54. Bài 2 . Các phép biến đổi lượng giác 56. A Tóm tắt lý thuyết 56. 1. Công thức cộng 56. 2. Công thức nhân đôi 56. 3. Công thức hạ bậc 56. 4. Công thức nhân ba 56. 5. Công thức biến đổi tổng thành tích 56. 6. Công thức biến đổi tích thành tổng 56. B Các dạng toán thường gặp 56. + Dạng 1. Áp dụng công thức cộng 56. 1. Ví dụ mẫu 57. 2. Bài tập tự luyện 59. 3. Câu hỏi trắc nghiệm 64. + Dạng 2. Áp dụng công thức nhân đôi, hạ bậc 68. 1. Ví dụ mẫu 68. 2. Bài tập tự luyện 71. 3. Câu hỏi trắc nghiệm 76. + Dạng 3. Công thức biến đổi 78. 1. Ví dụ mẫu 79. 2. Bài tập tự luyện 81. 3. Câu hỏi trắc nghiệm 86. + Dạng 4. Nhận dạng tam giác 95. 1. Ví dụ mẫu 95. 2. Bài tập rèn luyện 95. 3. Câu hỏi trắc nghiệm 97. Bài 3 . Hàm số lượng giác và đồ thị 99. A Kiến thức cần nhớ 99. 1. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn 99. 2. Hàm số y = sin x 99. 3. Hàm số y = cos x 99. 4. Hàm số y = tan x 100. 5. Hàm số y = cot x 100. + Dạng 1. Tìm tập xác định của hàm số lượng giác 101. 1. Ví dụ mẫu 101. 2. Bài tập tự luyện 102. 3. Câu hỏi trắc nghiệm 103. + Dạng 2. Tính chẵn lẻ của hàm số 106. 1. Ví dụ mẫu 106. 2. Bài tập tự luyện 108. 3. Câu hỏi trắc nghiệm 109. + Dạng 3. Sự biến thiên của hàm số lượng giác và các bài toán về đồ thị hàm số lượng giác 111. 1. Ví dụ mẫu 112. 2. Bài tập tự luyện 113. 3. Câu hỏi trắc nghiệm 124. + Dạng 4. Xét tính tuần hoàn và tìm chu kỳ của hàm số lượng giác 128. 1. Ví dụ mẫu 129. 2. Bài tập tự luyện 129. 3. Câu hỏi trắc nghiệm 130. + Dạng 5. Tìm giá trị lớn nhất – giá trị nhỏ nhất 132. 1. Ví dụ mẫu 132. 2. Bài tập tự luyện 134. 3. Câu hỏi trắc nghiệm 136. Bài 4 . Phương trình lượng giác cơ bản 139. A Phương trình tương đương 139. B Phương trình sin x = m 139. C Phương trình cos x = m 140. D Phương trình tan x = m 140. E Phương trình cot x = m 140. + Dạng 1. Điều kiện có nghiệm của phương trình lượng giác cơ bản 140. 1. Ví dụ mẫu 141. 2. Bài tập tự luyện 141. 3. Câu hỏi trắc nghiệm 142. + Dạng 2. Phương trình lượng giác cơ bản 144. 1. Ví dụ mẫu 144. 2. Bài tập tự luyện 146. 3. Câu hỏi trắc nghiệm 155. + Dạng 3. Phương trình đưa về phương trình lượng giác cơ bản 162. 1. Ví dụ mẫu 162. 2. Bài tập tự luyện 164. 3. Câu hỏi trắc nghiệm 171. + Dạng 4. Sự tương giao của các đồ thị hàm số lượng giác 175. 1. Ví dụ mẫu 175. 2. Bài tập tự luyện 175. + Dạng 5. Bài toán thực tế 176. 1. Ví dụ mẫu 176. 2. Bài tập tự luyện 179. 3. Câu hỏi trắc nghiệm 182. Bài 5 . Bài tập cuối chương I 186. A Bài tập tự luận 186. B Bài tập trắc nghiệm ôn tập 189. 1. Đề số 1 189. 2. Đề số 2 190.

Nguồn: toanmath.com

Đọc Sách

Phương pháp phân tích thành nhân tử trong việc giải phương trình lượng giác - Trần Thông
Phương trình lượng giác là vấn đề quan trọng và quen thuộc trong chương trình toán học bậc THPT cũng như trong các đề thi tuyển sinh đại học. Việc giải thành thạo phương trình lượng giác đã trở thành nhiệm vụ và cũng là mong muốn của mọi học sinh. Tuy nhiên, sự phong phú của công thức lượng giác đã gây khó khăn cho học sinh trong việc định hướng lời giải. Nếu định hướng không tốt sẽ dẫn đến biến đổi vòng vo, không giải được hoặc lời giải sẽ dài dòng, không đẹp. Cản trở này phần nào làm nản chí các em học sinh. Một số em đã sợ học và xác định bỏ phần phương trình lượng giác. Với mong muốn giúp học sinh khắc phục khó khăn này, tôi viết bài viết này. Bài viết đưa ra một số định hướng biến đổi phương trình dựa trên những dấu hiệu đặc biệt. Nhờ đó học sinh nhanh chóng tìm ra lời giải của bài toán, tiết kiệm thời gian, tự tin hơn trước các phương trình lượng giác. Bài viết được chia thành ba phần: [ads] + Phần A: Trình bày sự cần thiết và nội dung bài viết + Phần B: Nội dung bài viết, phần này chia thành các mục nhỏ dưới đây I. Nhận dạng nhân tử chung dựa vào đẳng thức cơ bản II. Phương trình bậc 2 đối với sinx, cosx III. Nhẩm nghiệm đặc biệt để xác định nhân tử chung IV. Sử dụng công thức đặc biệt V. Thay thế hằng số bằng đẳng thức lượng giác + Phần C: Trình bày một số bài tập tương tự.
Hàm số lượng giác và phương trình lượng giác - Trần Quốc Nghĩa
Tài liệu gồm 107 trang do thầy Trần Quốc Nghĩa biên soạn, nội dung tài liệu gồm 4 phần: + Phần 1. Tóm tắt lý thuyết cần thiết cho nội dung cơ bản + Phần 2. Các ví dụ mẫu + Phần 3. Các bài tập tự luyện cơ bản và nâng cao + Phần 4. Các câu hỏi trắc nghiệm có đáp án Mục lục tài liệu: Phần 1 – HÀM SỐ LƯỢNG GIÁC + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Tìm giá trị lớn nhất. Giá trị nhỏ nhất của hàm số lượng giác + Dạng 3. Xét tính chẵn – lẻ của hàm số + Dạng 4. Tính tuần hoàn của hàm số + Dạng 5. Sử dụng đồ thị Phần 2 – PHƯƠNG TRÌNH LƯỢNG GIÁC + Dạng 1. Phương trình cơ bản + Dạng 2. Phương trình bậc nhất theo một hàm số lượng giác + Dạng 3. Tìm nghiệm phương trình lượng giác trên khoảng, đoạn cho trước + Dạng 4. Phương trình bậc hai, bậc 3 đối với một hàm số lượng giác + Dạng 5. Phương trình bậc nhất đối với sin x và cos x (Phương trình cổ điển) + Dạng 6. Phương trình thuần nhất bậc hai, bậc ba + Dạng 7. [NC] Phương trình đối xứng – Phản đối xứng + Dạng 8. [NC] Phương trình lượng giác không mẫu mực + Dạng 9. Phương trình lượng giác có tham số + Dạng 10. Một số phương pháp giải phương trình lượng giác [ads] Phần 3 – BÀI TẬP TỔNG HỢP CHUYÊN ĐỀ 1 Phần 4 – PTLG TRONG CÁC ĐỀ THI ĐH – CĐ – THPT QG + Dạng 1. Công thức lượng giác + Dạng 2. Đưa về phương trình tích + Dạng 3. Biến đổi tổng thành tích – tích thành tổng + Dạng 4. Phương trình bậc 2 – bậc 3 + Dạng 5. Phương trình bậc nhất theo sinx, cosx + Dạng 6. Phương trình đẳng cấp + Dạng 7. Phương trình đối xứng + Dạng 8. Phương pháp hạ bậc + Dạng 9. Công thức nhân ba + Dạng 10. Phương trình có chứa giá trị tuyện đối Phương trình có chứa căn thức + Dạng 11. Phương trình có chứa tham số Phần 5 – BÀI TẬP TRẮC NGHIỆM Hàm số lượng giác Phương trình cơ bản – Phương trình bậc nhất Phương trình cổ điển Phương trình bậc hai – bậc ba Phương trình đẳng cấp Phương trình dạng khác Phương trình chứa tham số Phần 6 – BẢNG ĐÁP ÁN BÀI TẬP TRẮC NGHIỆM
Một số định hướng giải phương trình lượng giác - Phan Trọng Vĩ
Phương trình lượng giác là vấn đề quan trọng và quen thuộc trong chương trình toán học bậc THPT cũng như trong các đề thi tuyển sinh đại học. Việc giải thành thạo phương trình lượng giác đã trở thành nhiệm vụ và cũng là mong muốn của mọi học sinh. Tuy nhiên, sự phong phú của công thức lượng giác đã gây khó khăn cho học sinh trong việc định hướng lời giải. Nếu định hướng không tốt sẽ dẫn đến biến đổi vòng vo, không giải được hoặc lời giải sẽ dài dòng, không đẹp. Cản trở này phần nào làm nản chí các em học sinh. Một số em đã sợ học và xác định bỏ phần phương trình lượng giác. Với mong muốn giúp học sinh khắc phục khó khăn này, tôi viết sáng kiến kinh nghiệm Một số định hướng giải phương trình lượng giác. Bài viết đưa ra một số định hướng biến đổi phương trình dựa trên những dấu hiệu đặc biệt. Nhờ đó học sinh nhanh chóng tìm ra lời giải của bài toán, tiết kiệm thời gian, tự tin hơn trước các phương trình lượng giác. [ads] Nội dung sáng kiến gồm các nội dung sau : + I. Nhận dạng nhân tử chung dựa vào đẳng thức cơ bản + II. Phương trình bậc 2 đối với sin , cos x x . + III. Nhẩm nghiệm đặc biệt để xác định nhân tử chung + IV. Sử dụng công thức đặc biệt + V. Thay thế hằng số bằng đẳng thức lượng giác Mỗi nội dung đều được trình bày rất công phu. Dấu hiệu của mỗi phương pháp được đưa ra một cách đầy đủ và cụ thể. Các ví dụ cho mỗi nội dung phong phú, đa dạng, có phân tích định hướng thể hiện rõ ràng phương pháp đang áp dụng và có lời giải chi tiết.
Chuyên đề công thức lượng giác - Trần Quốc Nghĩa
Tài liệu gồm 131 trang tổng hợp lý thuyết, phân dạng và hướng dẫn giải các bài toán chuyên đề công thức lượng giác kèm 333 bài tập trắc nghiệm có lời giải chi tiết. Phần 1. CÔNG THỨC LƯỢNG GIÁC – Vấn đề 1. GÓC VÀ CUNG LƯỢNG GIÁC + Dạng 1. Mối liên hệ giữa độ và rad + Dạng 2. Các bài toán liên quan đến góc (cung) lượng giác + Dạng 3. Dựng các ngọn cung lượng giác trên đường tròn LG + Dạng 4. Độ dài của một cung tròn + Dạng 5. Tính các giá trị lượng giác của một cung khi biết một giá trị lượng giác của nó + Dạng 6. Rút gọn – Chứng minh + Dạng 7. Các dạng toán khác – Vấn đề 2. CUNG LIÊN KẾT + Dạng 1. Tính các giá trị lượng giác của một cung bằng cách rút về cung phần tư thứ nhất + Dạng 2. Tính giá trị biểu thức lượng giác + Dạng 3. Rút gọn – Chứng minh + Dạng 4. Hệ thức lượng trong tam giác [ads] – Vấn đề 3. CÔNG THỨC CỘNG + Dạng 1. Sử dụng trục tiếp các công thức để tính hay đơn giản biểu thức + Dạng 2. Chứng minh đẳng thức + Dạng 3. Chứng minh một biểu thức không phụ thuộc đối số + Dạng 4. Hệ thức lượng trong tam giác – Vấn đề 4. CÔNG THỨC NHÂN + Dạng 1. Sử dụng trục tiếp các công thức để tính hay đơn giản biểu thức + Dạng 2. Chứng minh đẳng thức + Dạng 3. Chứng minh một biểu thức không phụ thuộc đối số – Vấn đề 5. CÔNG THỨC BIẾN ĐỔI + Dạng 1. Biến đổi các biểu thức thành tổng + Dạng 2. Biến đổi các biểu thức thành tích + Dạng 3. Áp dụng công thức biến đổi để tính hay rút gọn một biểu thức lượng giác + Dạng 4. Chứng minh đẳng thức lượng giác + Dạng 5. Hệ thức lượng trong tam giác Phần 2. CÂU HỎI TRẮC NGHIỆM