Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lâm Đồng

Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Ba ngày 19 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Bà Rịa – Vũng Tàu : + Gọi S là tập hợp tất cả ước nguyên dương của số a = 648000. Chọn ngẫu nhiên hai phần tử khác nhau của S. Tính xác suất để hai số được chọn đều không chia hết cho 3. + Cho hàm số y có đồ thị (C) và đường thẳng (d): y = −3x + m. Tìm tất cả giá trị thực của tham số m để (d) cắt (C) tại hai điểm A, B và (d) lần lượt cắt trục hoành, trục tung tại hai điểm C, D mà diện tích tam giác OCD gấp đôi diện tích tam giác OAB (trong đó O là gốc tọa độ). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O và AB = 2a, AD = a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm H của OA. Gọi M, N lần lượt là trung điểm của SB, AD. Biết rằng góc giữa hai mặt phẳng (SBC) và (ABCD) là 45. 1. Tính thể tích khối chóp S.ABCD. 2. Cho điểm Q trên đoạn thẳng SA mà QS = 2QA. Tính thể tích khối đa diện ABCNQM. 3. Tính khoảng cách giữa hai đường thẳng SN, CM.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GDĐT Khánh Hòa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Khánh Hòa : + Gọi M là tập hợp tất cả các số tự nhiên mà mỗi số có năm chữ số phân biệt và không có hai chữ số chẵn đứng cạnh nhau. Tính số phần tử của tập M. + Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC; mặt phẳng (A’BC) vuông góc với mặt phẳng (AB’C’). Tính thể tích khối lăng trụ ABC.A’B’C’ theo a. + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của BC và K là trung điểm của AM. Biết KB = KC = a, KBC = 60°; góc giữa mặt phẳng (SKC) và mặt phẳng (ABC) bằng 45°. Tính theo a khoảng cách từ A đến mặt phẳng (SKC) và sin của góc giữa đường thẳng BC với mặt phẳng (SKC).
Đề học sinh giỏi tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày … tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Cho hàm số y có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tìm tọa độ điểm M sao cho khoảng cách từ I đến tiếp tuyến của (C) tại M đạt giá trị lớn nhất. + Gọi A là tập hợp các số tự nhiên có 5 chữ số. Lấy ngẫu nhiên một số thuộc tập hợp A, tính xác suất sao cho số được lấy chia hết cho 13 và có chữ số hàng đơn vị là 1. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều. Hình chiếu vuông góc của A’ lên (ABC) là trung điểm của BC. Mặt phẳng (P) vuông góc với cạnh AA’ và cắt các cạnh bên AA’, BB’, CC’ của hình lăng trụ lần lượt tại I, J, K. Biết mặt phẳng (ABB’A’) vuông góc với mặt phẳng (ACC’A’) và chu vi của tam giác IJK bằng 1. Tính khoảng cách giữa CC’ và AB.
Đề học sinh giỏi Toán 12 lần 2 năm 2023 - 2024 trường THPT Nguyễn Thị Giang - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 lần 2 năm học 2023 – 2024 trường THPT Nguyễn Thị Giang, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề học sinh giỏi Toán 12 lần 2 năm 2023 – 2024 trường THPT Nguyễn Thị Giang – Vĩnh Phúc : + Một người gửi ngân hàng 100 triệu đồng với lãi suất r = 0,5% một tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu? A. 44 tháng. B. 46 tháng. C. 45 tháng. D. 47 tháng. + Số lượng xe ô tô vào một đường hầm được cho bởi công thức 2 290 4 v f v trong đó vm s là vận tốc trung bình của các xe khi đi vào đường hầm. Biết trong một giây, lưu lượng xe vào hầm ở thời điểm vận tốc trung bình của các xe đạt v ms 0 là kết quả của tính giới hạn 0 lim v (làm tròn kết quả đến hàng đơn vị). Lưu lượng xe vào hầm ở thời điểm vận tốc trung bình của các xe đạt 20(m s) là? + Trong một bài thi trắc nghiệm khách quan có 10 câu. Mỗi câu có bốn phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng thì được 1 điểm, trả lời sai thì bị trừ 0,5 điểm. Một thí sinh do không học bài nên làm bài bằng cách với mỗi câu đều chọn ngẫu nhiên một phương án trả lời. Xác suất để thí sinh đó làm bài được số điểm không nhỏ hơn 7 là?