Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 12 môn Toán năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình

Nội dung Đề kiểm tra lớp 12 môn Toán năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình Bản PDF Sytu giới thiệu đến các em học sinh lớp 12 đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình, nhằm giúp các em có thêm đề thi chất lượng, chuẩn cấu trúc, để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình mã đề 131, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm với 4 đáp án để lựa chọn, học sinh có 90 phút để hoàn thành bài thi thử môn Toán, đề thi có đáp án. [ads] Trích dẫn đề kiểm tra Toán lớp 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình : + Sân vận động Sports Hub (Singapore) là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một elip (E) có trục lớn dài 150 m, trục bé dài 90 m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt elip (E) ở M, N (Hình a) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình b) với MN là một dây cung và góc MIN = 90◦. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? + Cho một quân cờ đứng ở vị trí trung tâm của một bàn cờ 9 × 9 (xem hình vẽ). Biết rằng, mỗi lần di chuyển, quân cờ chỉ di chuyển sang ô có cùng một cạnh với ô đang đứng. Tính xác suất để sau bốn lần di chuyển, quân cờ không trở về đúng vị trí ban đầu. + Trong không gian Oxyz cho mặt cầu (S) có phương trình x^2 + y^2 + z^2 − 4x + 2y − 2z − 3 = 0 và điểm A(5; 3;−2). Một đường thẳng d thay đổi luôn đi qua A và luôn cắt mặt cầu tại hai điểm phân biệt M, N. Tính giá trị nhỏ nhất của biểu thức S = AM + 4AN.

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCĐ Toán 12 lần 1 năm 2019 - 2020 trường Ngô Gia Tự - Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT Ngô Gia Tự, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chuyên đề môn Toán dành cho học sinh khối 12 lần thứ nhất năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán 12 định kỳ trong giai đoạn giữa học kỳ 1, đồng thời ôn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2020. Đề thi KSCĐ Toán 12 lần 1 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc có mã đề 137, đề có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi nhằm kiểm tra kiến thức Toán 11 và Toán 12 đã được học, đề thi có đáp án. Trích dẫn đề thi KSCĐ Toán 12 lần 1 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Bạn An thả quả bóng từ độ cao 6m so với mặt đất xuống theo phương thẳng đứng sau đó bóng nảy lên rồi lại rơi xuống cứ như vậy cho đến khi bóng dừng lại trên mặt đất. Tính quãng đường mà bóng đã di chuyển biết rằng sau mỗi lần chạm đất bóng lại nảy lên đến độ cao bằng 3/4 độ cao của lần ngay trước đó. + Vòng loại World Cup 2022 khu vực Châu Á tại bảng G Việt Nam cùng bảng với các đội Thái Lan, Malaysia, Indonesia và UAE thi đấu theo thể thức mỗi đội gặp nhau hai lần. Hỏi kết thúc vòng đấu bảng ban tổ chức phải tổ chức bao nhiêu trận đấu ở bảng G? [ads] + Cho tứ diện đều ABCD có cạnh bằng 12. Gọi M, N, P lần lượt thỏa mãn các hệ thức vectơ MA + MB = 0, NB + NC = 0, PC + 2PD = 0. Mặt phẳng (MNP) chia tứ diện thành hai phần. Tính thể tích khối đa diện chứa đỉnh A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, M nằm giữa A và O, mặt phẳng (α) qua M song song với SA và BD. Thiết diện của mặt phẳng (α) với hình chóp là: A. Một hình thang. B. Một hình bình hành. C. Một ngũ giác. D. Một tam giác. + Ba bạn Đoàn, Thanh, Niên mỗi bạn viết lên bảng một số tự nhiên nhỏ hơn 21. Tính xác suất để tổng ba số được viết lên bảng bằng 21.
Đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Hàn Thuyên - Bắc Ninh
Ngày … tháng 10 năm 2019, trường THPT Hàn Thuyên, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 lần thứ nhất giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Hàn Thuyên – Bắc Ninh mã đề 132, đề gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, để hoàn thành tốt bài thi, học sinh cần nắm vững các kiến thức Toán 12 vừa được học, đồng thời ôn tập lại những kiến thức Toán 10 và Toán 11 trọng tâm. Trích dẫn đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Hàn Thuyên – Bắc Ninh : + Cho S là tập các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ S. Tính xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 (kết quả làm tròn đến hàng phần nghìn)? + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AD = DC = x, AB = 2x. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi G là trọng tâm của tam giác SAD. Tính khoảng cách d từ điểm G đến mặt phẳng (SBC). [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm A(0;2) và (d) là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên (d). Giả sử H(a;b) với a > 0. Biết khoảng cách từ điểm H đến trục hoành bằng độ dài AH. Tính T = a^2 – 4b. + Cho hình hộp chữ nhật có tổng độ dài tất cả các cạnh bằng 40, độ dài đường chéo bằng 5√2. Tìm thể tích lớn nhất Vmax của khối hộp chữ nhật đó. + Mã số điện thoại cố định của tỉnh Bắc Ninh là một kí tự gồm 10 chữ số trong đó 4 chữ số đầu là 0222. Hỏi có nhiều nhất bao nhiêu số điện thoại được tạo thành?
Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Yên Lạc - Vĩnh Phúc
Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập môn Toán 12 trong giai đoạn giữa học kỳ 1 và ôn thi THPT Quốc gia 2020 môn Toán, trường THPT Yên Lạc – Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc có mã đề 201, đề thi gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi kiểm tra tổng quát lại kiến thức Toán 12 đã học và ôn tập một số kiến thức Toán 11 trọng tâm. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Yên Lạc – Vĩnh Phúc : + Cho khối lập phương ABCD.A’B’C’D’ cạnh bằng 3. Gọi M, N lần lượt là trung điểm của đoạn thẳng A’D’ và C’D’. Mặt phẳng (BMN) chia khối lập phương thành hai phần, gọi V là thể tích phần chứa đỉnh B’. Tính V? [ads] + Cho hàm số y = (2x – 1)/(2x – 2) có đồ thị (C). Gọi M(a;b) với a > 1 là điểm thuộc (C). Biết tiếp tuyến của (C) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S_OIB = 8.S_OIA (trong đó O là gốc tọa độ và I là giao điểm hai tiệm cận). Tính giá trị của S = a + 4b. + Một nhóm trường THPT Yên Lạc, tỉnh Vĩnh Phúc gồm 3 học sinh lớp 10, 3 học sinh lớp 11 và 3 học sinh lớp 12 được xếp ngồi vào một hàng có 9 ghế, mỗi học sinh ngồi 1 ghế. Tính xác suất để 3 học sinh lớp 10 không ngồi 3 ghế liền nhau.
Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Lê Xoay - Vĩnh Phúc
Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Lê Xoay – Vĩnh Phúc có mã đề 132, đề thi gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, nội dung kiểm tra chủ yếu xoay quanh các kiến thức Toán 12 học sinh đã được học, bên cạnh đó có một số ít bài toán trong chương trình Toán 11, kỳ thi được diễn ra nhằm đánh giá chất lượng Toán 12 giai đoạn giữa học kỳ 1, đồng thời kiểm tra rèn luyện kiến thức hướng đến kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Lê Xoay – Vĩnh Phúc : + Đường dây điện 110 KV kéo từ trạm phát (điểm A) trong đất liền ra đảo (điểm C). Biết khoảng cách ngắn nhất từ C đến B là 60 km, khoảng cách từ A đến B là 100 km, mỗi km dây điện dưới nước chi phí là 100 triệu đồng, chi phí mỗi km dây điện trên bờ là 60 triệu đồng. Hỏi điểm G cách A bao nhiêu km để mắc dây điện từ A đến G rồi từ G đến C chi phí thấp nhất? (Đoạn AB trên bờ và đoạn GC dưới nước). + Biết các số x + 6y, 5x + 2y, 8x + y theo thứ tự lập thành cấp số cộng và các số 1, x – y, x – 7y theo thứ tự lập thành cấp số nhân. Khi đó P = x + y có giá trị bằng? [ads] + Cho hàm số f(x) = x^4 – 4x^2 + 3 có đồ thị là đường cong trong hình bên. Hỏi phương trình (x^4 – 4x^2 + 3)^4 – 4(x^4 – 4x^2 + 3)^2 + 3 = 0 có bao nhiêu nghiệm thực phân biệt? + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số 1/(2f(x) – 1) là? + Từ tập hợp các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên 1 số. Tính xác suất để lấy được số có mặt đúng 3 chữ số khác nhau.