Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và lôgarit ôn thi THPT 2021 - Nguyễn Bảo Vương

Tài liệu gồm 583 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, phân dạng và tuyển chọn các bài tập trắc nghiệm (có đáp án và lời giải chi tiết) chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 2 và ôn thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . LŨY THỪA VÀ HÀM SỐ LŨY THỪA. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Rút gọn, biến đổi, tính toán biểu thức lũy thừa. + Dạng toán 2. So sánh các biểu thức chứa lũy thừa. + Dạng toán 3. Tìm tập xác định của hàm số lũy thừa. + Dạng toán 4. Đạo hàm hàm số lũy thừa. + Dạng toán 5. Khảo sát hàm số lũy thừa. CHUYÊN ĐỀ 2 . CÔNG THỨC, BIẾN ĐỔI LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Câu hỏi lý thuyết. + Dạng toán 2. Tính toán, rút gọn biểu thức chứa logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Biểu diễn biểu thức logarit này theo logarit khác. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 4. Một số bài toán nâng cao. CHUYÊN ĐỀ 3 . HÀM SỐ MŨ – HÀM SỐ LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Tìm tập xác định hàm số mũ, hàm số logarit. + Dạng toán 2. Tìm đạo hàm hàm số mũ, hàm số logarit. + Dạng toán 3. Khảo sát hàm số mũ, hàm số logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 4. Tìm tập xác định hàm số mũ, hàm số logarit. + Dạng toán 5. Tính đạo hàm hàm số mũ, hàm số logarit. + Dạng toán 6. Khảo sát hàm số mũ, hàm số logarit. + Dạng toán 7. Bài toán thực tế. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 8. Tính toán liên quan đến logarit dùng đẳng thức. + Dạng toán 9. Bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất mũ – loagrit (sử dụng phương pháp bất đẳng thức – biến đổi). + Dạng toán 10. Sử dụng phương pháp hàm số (hàm đặc trưng) giải các bài toán logarit. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH MŨ – LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Phương trình logarit. + + Dạng toán 1.1 Phương trình cơ bản. + + Dạng toán 1.2 Biến đổi đưa về phương trình cơ bản. + Dạng toán 2. Phương trình mũ. + + Dạng toán 2.1 Phương trình cơ bản. + + Dạng toán 2.2 Biến đổi đưa về phương trình cơ bản. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Phương pháp giải phương trình logarit. + + Dạng toán 3.1 Phương pháp đưa về cùng cơ số. + + Dạng toán 3.2 Phương pháp đặt ẩn phụ. + + Dạng toán 3.3 Phương pháp mũ hóa. + + Dạng toán 3.4 Phương pháp hàm số, đánh giá. + Dạng toán 4. Phương pháp giải phương trình mũ. + + Dạng toán 4.1 Phương pháp đưa về cùng cơ số. + + Dạng toán 4.2 Phương pháp đặt ẩn phụ. + + Dạng toán 4.3 Phương pháp logarit hóa. + + Dạng toán 4.4 Phương pháp hàm số, đánh giá. + Dạng toán 5. Phương trình tổ hợp của mũ và logarit. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 6. Phương trình logarit chứa tham số. + Dạng toán 7. Phương trình mũ chứa tham số. + Dạng toán 8. Phương trình kết hợp của mũ và logarit chứa tham số. + Dạng toán 9. Phương trình mũ – logarit chứa nhiều ẩn. CHUYÊN ĐỀ 5 . BẤT PHƯƠNG TRÌNH MŨ – LOGARIT. DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (mức độ 5 – 6 điểm). + Dạng toán 1. Bất phương trình logarit. + Dạng toán 2. Bất phương trình mũ. DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (mức độ 7 – 8 điểm). + Dạng toán 3. Bất phương trình logarit. + Dạng toán 4. Bất phương trình mũ. DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (mức độ 9 – 10 điểm). + Dạng toán 5. Bất phương trình logarit chứa tham số. + Dạng toán 6. Bất phương trình mũ chứa tham số. + Dạng toán 7. Bất phương trình nhiều ẩn.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm nâng cao mũ - logarit - Đặng Việt Đông
Tài liệu gồm 141 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài toán trắc nghiệm nâng cao mũ – logarit có đáp án và lời giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán, tài liệu phù hợp với các em học sinh khá, giỏi ôn luyện điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. + Vấn đề 1. Lũy thừa – mũ – lôgarit + Vấn đề 2. Phương trình, bất phương trình mũ + Vấn đề 3. Phương trình, bất phương trình lôgarit + Vấn đề 4. Bài toán lãi suất – trả góp + Vấn đề 5. Bài toán tăng trưởng [ads] Xem thêm : + Trắc nghiệm nâng cao số phức – Đặng Việt Đông (Giải tích 12 chương 4) + Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông (Giải tích 12 chương 3) + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông (Hình học 12 chương 3)
Chuyên đề lũy thừa, mũ và logarit - Bùi Trần Duy Tuấn
Chuyên đề lũy thừa, mũ và logarit do thầy Bùi Trần Duy Tuấn biên soạn nhằm làm tư liệu cho các em lớp 12 ôn thi kỳ thi THPT Quốc gia tham khảo, giúp các em ôn lại kiến thức nhanh chóng và hiệu quả hơn. Tài liệu gồm 341 trang tuyển tập kiến thức, dạng toán, thủ thuật Casio và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề lũy thừa, mũ và logarit trong chương trình Giải tích 12 chương 2. Chủ đề 1 . Lũy thừa  A. Kiến thức cần nắm I. Lũy thừa II. Căn bậc n B. Một số dạng toán liên quan về lũy thừa I. Viết lũy thừa với dạng số mũ hữu tỉ II. Tính giá trị của biểu thức III. Rút gọn biểu thức IV. So sánh các số C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm  Chủ đề 2 . Logarit A. Kiến thức cơ bản B. Một số dạng toán về logarit  I. Tính, rút gọn giá trị của một biểu thức chứa logarit II. Biểu diễn một logarit theo các logarit cho trước C. Thủ thuật casio I. Phương pháp hệ số hóa biến II. Một số bài toán minh họa D. Bài tập trắc nghiệm Chủ đề 3 . Hàm số lũy thừa – mũ – logarit A. Kiến thức cần nắm I. Hàm lũy thừa II. Hàm số mũ III. Hàm số logarit B. Một số dạng toán thường gặp I. Tìm tập xác định của hàm số II. Tính đạo hàm của hàm số III. Tính đơn điệu của hàm số IV. Đồ thị của hàm số V. Tính giá trị biểu thức C. Bài tập trắc nghiệm [ads] Chủ đề 4 . Phương trình, hệ phương trình mũ – logarit A. Các phương pháp giải phương trình mũ và logarit I. Phương pháp đưa về cùng cơ số giải phương trình mũ và logarit II. Phương pháp đặt ẩn phụ giải phương trình mũ và logarit III. Phương pháp logarit hóa giải phương trình mũ và logarit IV. Phương pháp hàm số để giải phương trình mũ và logarit V. Phương trình chứa tham số B. Hệ phương trình mũ và logarit I. Phương pháp thế II. Phương pháp biến đổi tương đương III. Phương pháp đặt ẩn phụ IV. Phương pháp hàm số C. Thủ thuật casio giải phương trình mũ – logarit  I. Phương pháp sử dụng shift solve II. Phương pháp Calc III. Phương pháp sử dụng mode 7 D. Bài tập trắc nghiệm Chủ đề 5 . Bất phương trình mũ – logarit A. Phương pháp giải bất phương trình mũ và loagrit I. Phương pháp biến đổi tương đương cho bất phương trình mũ II. Phương pháp biến đổi tương đương cho bất phương trình logarit III. Phương pháp đặt ẩn phụ giải bất phương trình mũ và loagrit IV. Phương pháp logarit hóa giải bất phương trình mũ và logarit V. Phương pháp sử dụng tính chất của hàm số để giải bất phương trình mũ và logarit VI. Bất phương trình chứa tham số B. Thủ thuật casio giải bất phương trình mũ và loagrit I. Phương pháp 1. Calc theo chiều thuận II. Phương pháp 2 . Calc theo chiều nghịch III. Phương pháp 3. Lập bảng giá trị mode 7 IV. Phương pháp 4. Lược đồ con rắn C. Bài tập trắc nghiệm Chủ đề 6 . Các bài toán ứng dụng của hàm số mũ – logarit A. Các dạng toán ứng dụng của hàm số lũy thừa – mũ – logarit Một số khái niệm liên quan đến bài toán ngân hàng I. Lãi đơn 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ, tìm vốn ban đầu II. Lãi kép 1. Dạng 1. Cho biết vốn và lãi suất, tìm tổng số tiền có được sau n kỳ 2. Dạng 2. Cho biết vốn và lãi suất, tổng số tiền có được sau n kỳ. Tìm n 3. Dạng 3. Cho biết vốn, tổng số tiền có được sau n kỳ. Tìm lãi suất 4. Dạng 4. Cho biết lãi suất, tổng số tiền có được sau n kỳ. Tìm vốn ban đầu III. Bài toán vay trả góp – góp vốn IV. Bài toán lãi kép liên tục – công thức tăng trưởng mũ – ứng dụng Trong lĩnh vực đời sống xã hội 1. Bài toán lãi kép liên tục 2. Bài toán về dân số V. Ứng dụng trong lĩnh vực khoa học kỹ thuật B. Bài tập trắc nghiệm Xem thêm chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn: + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn
Ứng dụng hàm số lũy thừa, hàm số mũ và hàm số logarit để giải các bài toán thực tế liên quan
Tài liệu 63 trang giới thiệu các ứng dụng hàm số lũy thừa, hàm số mũ và hàm số logarit đế giải quyết các bài toán thực tế liên quan. Các bài toán về hàm số lũy thừa hàm số mũ và hàm số logarit là các bài toán rất hay và có nhiều ứng dụng trong thực tế. 1. Các ứng dụng trong kinh tế: Bài toán lãi suất trong gửi tiền vào ngân hàng, bài toán vay, mua trả góp … 2. Các ứng dụng trong lĩnh vực đời sống và xã hội: Bài toán tăng trưởng về dân số …. 3. Các ứng dụng trong lĩnh vực khoa học kỹ thuật: Bài toán liên quan đến sự phóng xạ, tính toán các cơn dư chấn do động đất, cường độ và mức cường độ âm thanh … [ads] Trước khi đọc các phần tiếp theo của tài liệu, các em thử một lần nhớ lại có khi nào ta từng đi theo bố (mẹ) vào ngân hàng: để gửi tiền tiết kiệm, hoặc vay tiền ngân hàng, hoặc làm một thẻ ATM mới … ở đó các em sẽ thay được những bảng thông báo về lãi suất tiền gửi, lãi suất cho vay, các em nghe được các nhân viên ngân hàng tư vấn về hình thức gửi tiền (vay tiền) và cách tính lãi suất. Liệu có em nào thắc mắc tư hỏi rằng lãi suất là gì? Có các hình thức tính lãi suất nào thường gặp? Câu trả lời sẽ có trong các phần tiếp theo của tài liệu. Trong tài liệu nhỏ này các em cũng tìm được những câu trả lời cho các câu hỏi như: Dân số các quốc gia được dự báo tăng hay giảm bằng cách nào? Độ to (nhỏ) của âm thanh được tính toán như thế nào? … Qua nội dung này, chúng ta sẽ biết vận dụng các kiến thức đã học về hàm số lũy thừa, hàm số mũ và hàm số logarit vào đế giải quyết một số bài toán thực tế liên quan các chủ đề nêu ở trên. Các chủ đề trong bài toán, được thể hiện qua các phần sau: + Phần A: Tóm tắt lí thuyết và các kiến thức liên quan + Phần B: Các bài toán ứng dụng thực tế + Phần C: Các bài toán trắc nghiệm khách quan + Phần D: Đáp án và hướng dẫn giải câu hỏi trắc nghiệm Bạn đọc có thể xem thêm ứng dụng của các kiến thức tích phân, hình học vào giải quyết các bài toán thực tế dưới đây: + Ứng dụng tích phân để giải bài toán thực tiễn – Trần Văn Tài + Bài toán thực tế liên quan đến hình học – Nguyễn Bá Hoàng
Tài liệu tự học chuyên đề hàm số lũy thừa - mũ - logarit - Lê Minh Cường
Nhằm tạo nguồn tài liệu dồi dào, phong phú và thích hợp với xu hướng tự học của học sinh. Thầy Lê Minh Cường cùng một số thầy (cô) khác đã dày công biên soạn và sưu tầm các dạng toán trắc nghiệm lớp 12 và cho ra đời tập “TÀI LIỆU TỰ HỌC – TOÁN 12, Vol.1” để đáp ứng nhu cầu học sinh cũng như làm thỏa mãn tính tự học ở những bạn đã sớm ý thức được kỹ năng cần thiết này. Tài liệu gồm 55 trang tóm tắt lý thuyết, công thức, các ví dụ có lời giải và các bài toán trắc nghiệm có đáp án chuyên đề hàm số lũy thừa – mũ – logarit (Chương 2 Giải tích 12). Nội dung gồm các phần: Công thức lũy thừa – mũ – logarit  1. Rút gọn biểu thức lũy thừa 2. So sánh 3. Biến đổi biểu thức Logarit 4. Phân tích biểu thức Logarit 4.1. Biểu diễn theo 1 biến 4.2. Biểu diễn theo 2 biến 5. Tính biểu thức logarit Hàm số lũy thừa – Mũ – Logarit  1. Tìm tập xác định 1.1. Hàm lũy thừa 1.2. Hàm logarit 2. Tìm đạo hàm 2.1. Hàm mũ và lũy thừa 2.2. Hàm logarit [ads] 3. Tìm tập xác định và tính đạo hàm các hàm phức tạp 4 Tính chất hàm số 4.1. Tính đơn điệu của hàm chứa mũ – logarit 4.2. Cực trị, giới hạn, tiệm cận của hàm chứa mũ – logarit 4.3. Tính chất đồ thị hàm chứa mũ – logarit 4.4. Giá trị lớn nhất và nhỏ nhất của hàm số chứa mũ – logarit 4.5. Hàm mũ – logarit có tham số PT – BPT mũ và logarit  1. Phương trình mũ 1.1. Phương trình cơ bản 1.2. Đặt ẩn phụ 1.3. Phương pháp khác 1.4. Phương trình chứa tham số 1.5. Sử dụng tính đơn điện của hàm số 2. Phương trình logarit 2.1. Phương trình cơ bản 2.2. Phương pháp đặt ẩn phụ 2.3. Phương trình logarit chứa tham số 3. Bài tập nâng cao về phương trình 4. Bất phương trình mũ 4.1. Bất phương trình cơ bản 4.2. Các phương pháp khác 5. Bất phương trình logarit 5.1. Cơ bản 5.2. Bất phương trình tổng hợp Bài toán thực tế