Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2022 2023 cụm trường THCS quận Đống Đa Hà Nội

Nội dung Đề thi thử Toán vào 10 năm 2022 2023 cụm trường THCS quận Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2022-2023 cụm trường THCS quận Đống Đa Hà Nội Đề thi thử Toán vào 10 năm 2022-2023 cụm trường THCS quận Đống Đa Hà Nội Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022-2023 của cụm các trường THCS quận Đống Đa, thành phố Hà Nội, bao gồm THCS Nguyễn Trường Tộ, THCS Thái Thịnh, THCS Láng Thượng, THCS Láng Hạ. Kỳ thi sẽ diễn ra vào ngày 11 tháng 05 năm 2022, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022-2023 cụm trường THCS quận Đống Đa Hà Nội: Bài 1: Khôi đi xe đạp từ nhà đến trường trên quãng đường dài 4 km. Khi đi từ trường về nhà trên con đường đó, Khôi đạp xe với vận tốc trung bình lớn hơn vận tốc trung bình lúc đi là 2 km/h. Tổng thời gian đạp xe cả đi và về của Khôi là 44 phút. Hãy tính vận tốc đạp xe trung bình của Khôi lúc đi từ nhà đến trường. Bài 2: Một khúc gỗ hình trụ có bán kính đáy 15 cm và diện tích xung quanh của khúc gỗ là 2400π cm2. Hãy tính chiều cao của hình trụ. Bài 3: Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (AB là hai tiếp điểm). Một đường thẳng d thay đổi đi qua M cắt đường tròn O tại hai điểm N, P sao cho MN = MP. Gọi K là trung điểm của NP. Hãy thực hiện các yêu cầu sau: Chứng minh năm điểm AMBOK cùng thuộc một đường tròn. Chứng minh KM là tia phân giác của góc AKB. Tia BK cắt đường tròn O tại điểm thứ hai là Q. Xác định vị trí của đường thẳng d để diện tích tam giác MPQ đạt giá trị lớn nhất. Hy vọng đề thi sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 21 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau : + Ngày của Cha hay còn gọi là Father’s Day là ngày để con bày tỏ lòng biết ơn và hiếu thảo đối với cha mình. Tương tự như Ngày của Mẹ, ngày của Cha cũng không cố định cụ thể mà được quy ước chọn ngày chủ nhật tuần thứ 3 của tháng 6 hàng năm. Nhân dịp lễ “Ngày của Cha – 19/6/2022”, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834 700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng ba của mình; Duy tính nhẩm: cùng ở siêu thị A, cùng số lượng, cùng mẫu mã nhưng nếu mua vào ngày 18/6/2022 (ngày mà siêu thị A không có khuyến mãi giảm giá các mặt hàng) thì chỉ với số tiền tiết kiệm được là 1 025 000 đồng bạn ấy không đủ tiền để mua hai món hàng này. Em hãy cho biết, bạn Duy tính nhẩm như vậy có đúng không? Biết rằng, nếu không giảm giá thì tiền mua mỗi đôi giày gấp 11 lần tiền mua mỗi chiếc cà vạt. + Cho phương trình: x2 + kx + 2 = 0 (k là tham số). a) Tìm k để phương trình có nghiệm kép, tìm nghiệm kép đó. b) Tìm k để phương trình có hai nghiệm x1, x2 thỏa mãn? + Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Kẻ hai tiếp tuyến AB, AC với đường tròn (O;R) (B và C là các tiếp điểm), tia AC cắt BC tại I. Điểm H thuộc đoạn thẳng BI (H khác B và H khác I). Đường thẳng d vuông góc với OH tại H; d cắt AB và AC lần lượt tại P và Q. a) Chứng minh tứ giác OHBP nội tiếp đường tròn. b) Chứng minh rằng: OP = OQ. c) Khi H là trung điểm của đoạn thẳng BI, tính độ dài đoạn thẳng BC và diện tích của OPQ theo R.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Trà Vinh; đề thi gồm hai phần: phần chung dành cho tất cả các thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Trà Vinh : + Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có mặt sân bóng đá hình chữ nhật với chiều dài hơn chiều rộng 37m và có diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của mặt sân bóng đá này. + Một máy giặt và một tivi có giá tổng cộng 28 690 000 đồng. Sau khi giảm 10% một máy giặt và 15% một tivi, tổng số tiền mua hai sản phẩm này chỉ còn lại 24 961 000 đồng. Tính giá tiền mỗi sản phẩm trước khi giảm giá. + Cho biểu thức B. Với giá trị nào của x thì B đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Hoà Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 (các trường THPT – PT DTNT THPT tỉnh – PT DTNT THCS&THPT) môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hoà Bình; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hoà Bình : + Bác Bình trồng cam trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 4m, chu vi của mảnh vườn là 40m. Biết rằng cứ 3m2 bác Bình trồng được 1 cây cam, hỏi bác Bình trồng được bao nhiêu cây cam trên mảnh vườn đó. + Cho tam giác ABC vuông tại A có AB cm 5 BC cm 13. Tính cạnh AC và đường cao AH. + Cho đường tròn tâm O và điểm A nằm ngoài đường tròn, từ A kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm). Lấy điểm K thuộc cung nhỏ MN, kẻ tiếp tuyến với đường tròn O tại K cắt AM, AN theo thứ tự tại E và F. Gọi giao điểm của OE, OF với MN theo thứ tự là P và Q. 1) Chứng minh rằng: Tứ giác AMON là tứ giác nội tiếp. 2) Chứng minh rằng: 1 2 EOF MON. 3) Chứng minh rằng: ME OF OE MP. 4) Chứng minh rằng: OK, EQ, FP đồng quy.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (hệ chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Ngãi : + Cho bốn số thực a, b, c, d thỏa mãn a + b + c + d = 10 và a2 + b2 + c2 + d2 = 28. Tìm giá trị lớn nhất của biểu thức T = ab + ac + ad. + Cho đường tròn tâm O, bán kính R và hai điểm B, C cố định trên (O), BC = R. Điểm A thay đổi trên cung lớn BC của (O) sao cho AB < AC. Đường thẳng qua B và vuông góc với AC tại K cắt đường tròn (O) tại P (P khác B). Kẻ PQ vuông góc với đường thẳng BC tại Q. Tia phân giác trong của góc BAC cắt cạnh BC tại D. Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. a) Chứng minh ABK = KQP và MB/MC = (DB/DC)2. b) Khi A đối xứng với C qua O, tính diện tích tứ giác AMDO theo R. c) Tia AD cắt đường tròn (O) tại E (khác A). Lấy điểm I trên đoạn thẳng AE sao cho EI = EB. Đường thẳng BI cắt đường tròn (O) tại L (khác B). Qua B kẻ đường thẳng vuông góc với LE cắt đường thẳng LC tại F. Xác định vị trí điểm A để độ dài BF lớn nhất. + Một số nguyên dương được gọi là “số đặc biệt” nếu nó thỏa mãn đồng thời các điều kiện sau: i) Các chữ số của nó đều khác 0. ii) Số đó chia hết cho 12 và nếu đổi chỗ các chữ số của nó một cách tùy ý, ta vẫn thu được một số chia hết cho 12. a) Chứng minh rằng một “số đặc biệt” chỉ có thể chứa các chữ số 4 và 8. b) Có tất cả bao nhiêu “số đặc biệt” có 5 chữ số?