Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình

Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình Xin chào quý thầy, cô giáo và các em học sinh! Sytu xin trân trọng giới thiệu đến quý vị đề chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn một số phần của Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Quảng Bình: + Cho phương trình \( x^2 + 3x + m - 3 = 0 \) (m là tham số). a. Tìm tất cả các giá trị của m để phương trình có hai nghiệm. b. Trường hợp phương trình có hai nghiệm x1, x2, tìm tất cả các giá trị của m để x1, x2 thỏa mãn hệ thức \( 2x1x2 - (x1 + x2) = 2 \). + Cho nửa đường tròn tâm O đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A và B). Lấy điểm E thuộc cung AC (E khác A và C) sao cho AE < BC, gọi M là giao điểm của AC và BE. Kẻ MH vuông góc với AB tại H. 1. Chứng minh tứ giác BCMH nội tiếp. 2. Chứng minh ACE đồng dạng với HCM. 3. Gọi K là giao điểm của OE và HC. Chứng minh \( KE \times KO = KC \times KH \). + Với x thuộc R, tìm giá trị nhỏ nhất của biểu thức \( P = 9 \times 2 - 2|3x - 2| - 12x + 2028 \). Hy vọng rằng những bài toán này sẽ giúp các em học sinh rèn luyện kỹ năng và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bến Tre (chung)
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bến Tre (chung) Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) được áp dụng cho tất cả các thí sinh dự thi vào các lớp 10 Trung học Phổ thông Công lập. Bài thi bao gồm 08 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích đoạn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung): + Khi nào thì đồ thị của hai hàm số y = x + (5 + m) và y = 2x + (7 - m) cắt nhau tại một điểm nằm trên trục hoành? + Trong tam giác ABC vuông tại B với đường cao BH (H thuộc AC), đã biết AB = 6 cm, AC = 10 cm. Hãy tính độ dài các đoạn thẳng BC và BH. + Trên đường tròn (O) lấy hai điểm A, B sao cho AOB = 65° và điểm C như hình vẽ. Tính số đo AmB, ACB và số đo ACB.
Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung)
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) là đề thi đặc biệt dành cho tất cả các thí sinh muốn thi vào các lớp chuyên Toán, Văn và Tiếng Anh. Kỳ thi dự kiến diễn ra vào ngày ... tháng 07 năm 2020. Một trong những câu hỏi trong đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) đề cập đến một lớp chuyên Anh của trường Trung học Thực hành. Trong đó, có bốn tổ học sinh với số học sinh trong mỗi tổ bằng nhau. Sau một bài kiểm tra Anh văn, một số bạn được điểm 8 và các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Vấn đề đặt ra là cần tìm số học sinh trong lớp và số bạn được điểm 9 trong bài kiểm tra Anh văn. Ngoài ra, đề tuyển sinh còn đưa ra một bài toán liên quan đến việc cắt và gấp tấm tôn hình vuông để tạo thành một cái hộp không nắp. Đề bài yêu cầu tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. Đề thi cũng liên quan đến các khái niệm trong hình học như tam giác, đường tròn. Vấn đề được đặt ra là cần chứng minh rằng ba điểm B, M, E thẳng hàng trong một tam giác vuông cân. Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM mang đến cho các thí sinh những bài toán thú vị, phù hợp với trình độ học sinh và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán chính xác.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định đã được công bố, nhằm chọn lọc những học sinh có khả năng xuất sắc trong lĩnh vực Toán học. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định: Tìm các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. Chứng minh rằng đối với tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O), ta có MA > MB + MC khi M là một điểm bất kì trên cung nhỏ BC. Đưa ra các chứng minh liên quan đến tứ giác AMDN, giao điểm của AB và ED, trung điểm của KL và tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng HI vuông góc với EF. Đề thi không chỉ đánh giá kiến thức Toán học của thí sinh mà còn đòi hỏi khả năng tư duy logic, suy luận và giải quyết vấn đề. Hy vọng rằng các thí sinh sẽ hoàn thành kỳ thi một cách xuất sắc và thành công.
Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Bắc Giang
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang Đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang Đề thi tuyển sinh lớp 10 môn Toán năm 2020 - 2021 của trường THPT chuyên Bắc Giang là một bài thi khá thú vị và đầy thách thức. Đề thi gồm có 5 bài toán được biên soạn theo dạng đề tự luận, trong đó học sinh sẽ có thời gian làm bài trong 150 phút. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trong đó, một trong những bài toán khá đặc biệt trong đề thi là bài toán liên quan đến parabol và đường thẳng. Học sinh sẽ phải tìm giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt sao cho biểu thức T = 1/(x1 + 1)^4 + 1/(x2 + 1)^4 đạt giá trị nhỏ nhất. Ngoài ra, còn có các bài toán khác về tam giác, đường tròn và hỗn hợp hình học khác. Đề thi này không chỉ đòi hỏi kiến thức vững chắc mà còn yêu cầu học sinh có khả năng suy luận logic, tư duy sáng tạo và khả năng giải quyết vấn đề. Với độ khó và đa dạng của các bài toán, đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang hứa hẹn sẽ là một bài thi đầy cạm bẫy đối với các thí sinh.