Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 8 đợt 2 năm 2018 - 2019 phòng GDĐT Kim Thành - Hải Dương

Đề KSCL Toán 8 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương là đề kiểm tra chất lượng môn Toán lớp 8 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đề nhằm giúp giáo viên bộ môn Toán nắm rõ chất lượng học tập môn Toán của học sinh lớp 8 tại trường, để có những điều chỉnh phù hợp trong quá trình dạy và học nhằm nâng cao chất lượng cho giai đoạn nữa sau học kỳ 2 của năm học 2018 – 2019. Đề KSCL Toán 8 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán tự luận, học sinh có 120 phút để làm bài thi, đề thi không quá khó và các em hoàn toàn có thể đạt điểm số 8 – 9 nếu nắm vững các kiến thức Toán 8 trong sách giáo khoa. [ads] Trích dẫn đề KSCL Toán 8 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương : Cho tam giác ABC, trung tuyến AD. Đường phân giác của góc ADB cắt cạnh AB ở M, đường phân giác của góc ADC cắt cạnh AC ở N. Gọi K là giao điểm của AD và MN. a) So sánh MA/MB và DA/DB, giải thích rõ vì sao? b) Chứng minh rằng MN song song với BC. c) Chứng minh AM.AC = AN.AB và K là trung điểm của MN.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 8 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 8, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 8 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của AB, AC. a) Tứ giác BCNM là hình gì? Vì sao? b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt đường thẳng QE tại K. Chứng minh rằng EK = BC. c) Đường thẳng QE cắt CM tại F. Chứng minh EF = 1/4.BC. d) Đường thẳng qua E vuông góc với AB cắt đường thẳng qua F vuông góc với AC tại I. Chứng minh tam giác BIC cân. + Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến: A = (x – 3)^3 – x(x^2 + 27) + (3x)^2. + Tìm giá trị nhỏ nhất của biểu thức sau: Q = 3x^2 + 2y^2 + 4z^2 + 2xy + 4yz + 4xz – 4x – 2y + 5.