Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán tích phân thường gặp trong kỳ thi THPTQG

Tài liệu tích phân và các phương pháp tìm tích phân gồm 109 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán tích phân thường gặp trong kỳ thi THPTQG: Phần A . CÂU HỎI Dạng 1. Tích phân cơ bản (Trang 2). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 2). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 4). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 7). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 10). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 11). + Dạng 4.1 Hàm số tường minh (Trang 11). + Dạng 4.1.1 Hàm số chứa căn thức (Trang 11). + Dạng 4.1.2 Hàm số chứa hàm lượng giác (Trang 14). + Dạng 4.13. Hàm số chứa hàm số mũ, logarit (Trang 16). + Dạng 4.1.4 Hàm số hữu tỷ, đa thức (Trang 17). + Dạng 4.2 Hàm số không tường minh (hàm ẩn) (Trang 18). Dạng 5. Tích phân TỪNG PHẦN (Trang 22). + Dạng 5.1 Hàm số tường minh (Trang 22). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 25). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 29). Dạng 7. Tích phân của một số hàm số khác (Trang 31). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 31). + Dạng 7.2 Tích phân nhiều công thức (Trang 32). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 33). Dạng 8. Một số bài toán tích phân khác (Trang 34). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tích phân cơ bản (Trang 38). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 38). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 40). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 43). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 46). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 48). + Dạng 4.1. Hàm số tường minh (Trang 48). + Dạng 4.1.1. Hàm số chứa căn thức (Trang 48). + Dạng 4.1.2. Hàm số chứa hàm lượng giác (Trang 54). + Dạng 4.1.3. Hàm số chứa hàm số mũ, logarit (Trang 57). + Dạng 4.1.4. Hàm số hữu tỷ, đa thức (Trang 59). + Dạng 4.2. Hàm số không tường minh (hàm ẩn) (Trang 60). Dạng 5. Tích phân TỪNG PHẦN (Trang 68). + Dạng 5.1 Hàm số tường minh (Trang 68). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 74). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 88). Dạng 7. Tích phân của một số hàm số khác (Trang 91). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 91). + Dạng 7.2. Tích phân nhiều công thức (Trang 95). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 95). Dạng 8. Một số bài toán tích phân khác (Trang 100).

Nguồn: toanmath.com

Đọc Sách

Bài giảng ứng dụng của tích phân
Tài liệu gồm 48 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề ứng dụng của tích phân, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm vững công thức tính diện tích hình phẳng, thể tích vật thể và thể tích khối tròn xoay. + Ghi nhớ các kiến thức cơ bản về phương trình đường thẳng, parabol, đường tròn và elip. + Nắm được định nghĩa, tính chất và các phương pháp tính tích phân. Kĩ năng : + Hiểu rõ các ứng dụng của tích phân để vận dụng vào việc tính diện tích hình phẳng và thể tích của các vật thể, cũng như vật thể tròn xoay. + Lập được phương trình đường thẳng, parabol, đường tròn và elip để xử lí các bài toán liên quan. + Tính được diện tích hình phẳng, thể tích vật thể và thể tích khối tròn xoay trong các trường hợp cụ thể. A. ỨNG DỤNG TÍCH PHÂN ĐỂ TÍNH DIỆN TÍCH HÌNH PHẲNG I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính diện tích hình phẳng. – Bài toán 1: Diện tích hình phẳng giới hạn bởi các đồ thị bởi một đường cong. – Bài toán 2: Diện tích hình phẳng giới hạn bởi hai đường cong. Dạng 2 : Diện tích hình phẳng giới hạn bởi hai đường cong. B. THỂ TÍCH VẬT THỂ VÀ THỂ TÍCH KHỐI TRÒN XOAY I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính thể tích vật thể. Dạng 2 : Tính thể tích khối tròn xoay.
Bài giảng tích phân và phương pháp tính tích phân
Tài liệu gồm 70 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề tích phân và phương pháp tính tích phân, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm được định nghĩa và các tính chất của tích phân. + Nắm vững các phương pháp tính nguyên hàm và bảng nguyên hàm cơ bản để áp dụng tính tích phân. + Nắm vững các tính chất tích phân của các hàm số chẵn, hàm số lẻ và các quy tắc đạo hàm của hàm số hợp. + Nắm vững các ý nghĩa vật lí của đạo hàm, từ dó giải quyết các bài toán thực tế sử dụng tích phân. Kĩ năng : + Hiểu rõ định nghĩa và tính chất của tích phân để vận dụng vào việc tính tích phân. + Sử dụng thành thạo bảng nguyên hàm và các phương pháp tính tích phân. + Vận dụng tích phân vào các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2 : Tính tích phân bằng phương pháp đổi biến. Dạng 3 : Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4 : Tính tích phân các hàm đặc biệt, tích phân hàm ẩn. Dạng 5 : Một số bài toán thực tế ứng dụng tích phân.
Bài giảng nguyên hàm và phương pháp tìm nguyên hàm
Tài liệu gồm 53 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề nguyên hàm và phương pháp tìm nguyên hàm, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Mục tiêu : Kiến thức : + Nắm được định nghĩa nguyên hàm; các tính chất của nguyên hàm và bảng nguyên hàm cơ bản. + Nắm vững các phương pháp tính nguyên hàm. Kĩ năng : + Hiểu rõ định nghĩa và tính chất của nguyên hàm để vận dụng vào việc tìm nguyên hàm. + Sử dụng thành thạo bảng nguyên hàm và các phương pháp tìm nguyên hàm. + Vận dụng nguyên hàm vào các bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm nguyên hàm bằng định nghĩa. – Bài toán 1. Nguyên hàm của các hàm số sơ cấp và hàm số mũ. – Bài toán 2. Nguyên hàm của hàm số lượng giác. – Bài toán 3. Các bài toán thực tế ứng dụng nguyên hàm. Dạng 2 : Tìm nguyên hàm bằng phương pháp đổi biến. – Bài toán 1. Phương pháp đổi biến dạng 1. – Bài toán 2. Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 3 : Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần.
Nắm trọn chuyên đề mũ - logarit và tích phân
Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.