Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng lớp 11 môn Toán cuối năm học 2019 2020 sở GD ĐT Bắc Ninh

Nội dung Đề kiểm tra chất lượng lớp 11 môn Toán cuối năm học 2019 2020 sở GD ĐT Bắc Ninh Bản PDF Ngày … tháng 06 năm 2020, phòng quản lý chất lượng sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng cuối năm môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra chất lượng Toán lớp 11 cuối năm học 2019 – 2020 sở GD&ĐT Bắc Ninh gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề kiểm tra chất lượng Toán lớp 11 cuối năm học 2019 – 2020 sở GD&ĐT Bắc Ninh : + Cho hàm số y = 2×2 − 3x + 1 có đồ thị là parabol (P). a) Tính đạo hàm y0 của hàm số đã cho và giải phương trình y0 = 0. b) Viết phương trình tiếp tuyến của parabol (P) tại điểm có hoành độ x0 = −1. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a√2, đường thẳng SA vuông góc với mặt phẳng (ABCD), SA = a√3 (với a > 0). Gọi M, N lần lượt là các điểm thuộc đường thẳng SB, SD sao cho AM vuông góc với SB và AN vuông góc với SD. Gọi I là trung điểm của đoạn thẳng MN và H là trung điểm của đoạn thẳng SC. a) Chứng minh rằng đường thẳng CD vuông góc với mặt phẳng (SAD) và đường thẳng AN vuông góc với mặt phẳng (SCD). b) Gọi góc giữa đường thẳng AC và mặt phẳng (SCD) là ϕ. Tính sin ϕ. c) Tính độ dài đoạn thẳng IH theo a. [ads] + Cho các số thực a, b, c thỏa mãn điều kiện 7a + b + 3c = 0. Chứng minh rằng phương trình ax2 + bx + c = 2020.cos (πx/2) có ít nhất một nghiệm trên R.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra cuối học kì 2 Toán 11 năm 2022 - 2023 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán 11 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào sáng thứ Bảy ngày 06 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm mã đề MĐ 111 MĐ 112 MĐ 113 MĐ 114 MĐ 115 MĐ 116 MĐ 117 MĐ 118. Trích dẫn Đề kiểm tra cuối học kì 2 Toán 11 năm 2022 – 2023 sở GD&ĐT Sơn La : + Cho hàm số 1 1 x y x có đồ thị C và đường thẳng d y x m 2. Chứng tỏ với mọi m đường thẳng d cắt C tại hai điểm A B phân biệt. Gọi 1 2 k k lần lượt là hệ số góc của tiếp tuyến tại với C tại A B. Tìm m để P k k 1 2 đạt giá trị lớn nhất. + Cho hình chóp S ABC có ABC vuông tại B và SA AB a. Hai mặt bên SAB và SAC cùng vuông góc với mặt đáy. Gọi K là hình chiếu vuông góc của A trên SB. a) Chứng minh: AK SBC. b) Gọi là góc tạo bởi đường thẳng SC và mặt phẳng SAB. Tính tan a? + Trong không gian đường thẳng được gọi là vuông góc với mp P nếu: A. Delta vuông góc với hai đường thẳng phân biệt nằm trong mp P. B. Delta vuông góc với đường thẳng a mà a song song với mp P. C. Delta vuông góc với mọi đường thẳng nằm trong mp P. D. Delta vuông góc với đường thẳng a nằm trong mp P.
Đề cuối kỳ 2 Toán 11 năm 2022 - 2023 trường THPT Hà Huy Tập - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2022 – 2023 trường THPT Hà Huy Tập, tỉnh Nghệ An; đề thi mã đề 101, hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 11 năm 2022 – 2023 trường THPT Hà Huy Tập – Nghệ An : + Trong không gian cho đường thẳng không nằm trong mặt phẳng (P), đường thẳng được gọi là vuông góc với mp (P) nếu: A. vuông góc với hai đường thẳng phân biệt nằm trong mp (P). B. vuông góc với đường thẳng a mà a song song với mp (P). C. vuông góc với đường thẳng a nằm trong mp (P). D. vuông góc với mọi đường thẳng nằm trong mp (P). + Cho hình chóp S ABCD có đáy là hình vuông cạnh bằng 4a, SA vuông góc với mặt phẳng đáy và SA a 4 3. a) Tính góc giữa đường thẳng SD và mặt phẳng ABCD. b) Tính khoảng cách từ điểm D đến mặt phẳng SBC. c) Gọi M là trung điểm cạnh AB. Tính khoảng cách giữa hai đường thẳng SC và DM. + Cho hình chóp S ABCD trong đó ABCD là hình chữ nhật SA ABCD. Trong các tam giác sau tam giác nào không phải là tam giác vuông? Cho hình chóp S ABCD có SA vuông góc với mặt phẳng đáy, ABCD là hình chữ nhật. Mặt phẳng ABCD vuông góc với mặt phẳng nào dưới đây?
Đề cuối kỳ 2 Toán 11 năm 2022 - 2023 trường THPT Trần Phú - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Phú Yên; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút, không tính thời gian phát đề; đề thi có đáp án và lời giải chi tiết mã đề 235 – 356 – 467 – 579. Trích dẫn Đề cuối kỳ 2 Toán 11 năm 2022 – 2023 trường THPT Trần Phú – Phú Yên : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và cạnh bên SA vuông góc với đáy, SA = 4a, AB = 3a. a) Chứng minh (SAB) ⊥ (SBC). b) Gọi G là trọng tâm của tam giác SCD. Tính khoảng cách từ điểm G đến mặt phẳng (SBC). + Cho phương trình −x5 + x4 − 2x + 3 = 0. Khẳng định nào sau đây đúng? A. Phương trình có ít nhất một nghiệm thuộc (1; 2). B. Phương trình có ít nhất một nghiệm thuộc (−1; 0). C. Phương trình có ít nhất một nghiệm thuộc (2; 3). D. Phương trình có ít nhất một nghiệm thuộc (0; 1). + Hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Chọn mệnh đề đúng trong các mệnh đề sau. A. SC ⊥ (ABCD). B. DC ⊥ (SAD). C. BC ⊥ (SCD). D. AC ⊥ (SBC).
Đề cuối học kỳ 2 Toán 11 năm 2022 - 2023 trường THPT Quế Sơn - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2022 – 2023 trường THPT Quế Sơn, tỉnh Quảng Nam; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề cuối học kỳ 2 Toán 11 năm 2022 – 2023 trường THPT Quế Sơn – Quảng Nam : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia. B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau. C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau. D. Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nằm trong mặt phẳng này và vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia. + Cho hình chóp S.EFGH có đáy EFGH là hình vuông và SE vuông góc với mặt phẳng (EFGH). a) Chứng minh rằng (SFH) ⊥ (SEG). b) Một mặt phẳng α đi qua điểm E và vuông góc với SG cắt các cạnh SF, SG, SH lần lượt tại M, N, P. Chứng minh rằng MP ⊥ EN. + Một chất điểm chuyển động theo phương trình 3 2 St t 3 5 2023 trong đó t được tính bằng giây (s) và S được tính bằng mét (m). Tính vận tốc của chất điểm tại thời điểm t = 2s.