Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ thuật giải toán tích phân

Ebook gồm 582 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, hướng dẫn các kỹ thuật giải toán nguyên hàm, tích phân và ứng dụng; giúp học sinh ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, kỳ thi HSG Toán THPT. Mục lục tài liệu kỹ thuật giải toán tích phân: GIỚI THIỆU ĐÔI NÉT VỀ LỊCH SỬ. CHƯƠNG 1 . NGUYÊN HÀM – TÍCH PHÂN HÀM PHÂN THỨC HỮU TỶ. CHƯƠNG 2 . NGUYÊN HÀM – TÍCH PHÂN TỪNG PHẦN. 1. Giới thiệu. 2. Một số bài toán cơ bản. 3. Một số bài toán tổng hợp. CHƯƠNG 3 . CÁC BÀI TOÁN VỀ HÀM LƯỢNG GIÁC. 1. Giới thiệu các lý thuyết cần nhớ. 2. Các dạng toán và phương pháp. 3. Các bài toán biến đổi tổng hợp. CHƯƠNG 4 . NGUYÊN HÀM TÍCH PHÂN HÀM VÔ TỶ, CĂN THỨC. 1. Giới thiệu. 2. Các dạng toán. 3. Kỹ thuật lượng giác hóa. 4. Tổng kết. 5. Các bài toán tổng hợp. CHƯƠNG 5 . CÁC LOẠI TÍCH PHÂN ĐẶC BIỆT. 1. Tích phân liên kết. 2. Kỹ thuật đưa biểu thức vào dấu vi phân. 3. Kỹ thuật đánh giá hàm số. 4. Tích phân hàm trị tuyệt đối. 5. Tích phân có cận thay đổi. 6. Tích phân hàm phân nhánh. 7. Tích phân truy hồi và các bài toán liên quan dãy số. 8. Chứng minh đẳng thức tổ hợp. CHƯƠNG 6 . PHƯƠNG PHÁP ĐỔI CẬN ĐỔI BIẾN – HÀM ẨN. 1. Kỹ thuật đổi ẩn và tính chất các hàm đặc biệt. 2. Các bài toán phương trình hàm. 3. Bài tập tổng hợp. CHƯƠNG 7 . CÁC BÀI TOÁN VỀ PHƯƠNG TRÌNH VI PHÂN. 1. Bài toán liên quan tới tích. 2. Bài toán liên quan tới tổng. 3. Một số bài toán tổng hợp. CHƯƠNG 8 . CÁC ỨNG DỤNG CỦA TÍCH PHÂN. 1. Ứng dụng tính diện tích hình phẳng. 2. Ứng dụng tính thể tích. 3. Ứng dụng tích phân trong thực tiễn. CHƯƠNG 9 . BẤT ĐẲNG THỨC TÍCH PHÂN. 1. Phân tích bình phương. 2. Cân bằng hệ số và bất đẳng thức AM – GM. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân.

Nguồn: toanmath.com

Đọc Sách

1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.
Tổng hợp 414 bài tập trắc nghiệm nguyên hàm trong đề thi thử có đáp án - Trần Văn Tài
Tài liệu gồm 63 trang tổng hợp 414 bài tập trắc nghiệm chủ đề nguyên hàm trong các đề thi thử THPT Quốc gia 2017 môn Toán, có đáp án (Những phương án được tô màu đỏ) Trích dẫn tài liệu : + Cho hai hàm số f(x), g(x) là hàm số liên tục trên R, có F(x), G(x) lần lượt là một nguyên hàm của f(x), g(x). Xét các mệnh đề sau: (I): F(x) + G(x) là một nguyên hàm của f(x) + g(x) (II): kF(x) là một nguyên hàm của kf(x) với k ∈ R (III): F(x).G(x) là một nguyên hàm của f(x)g(x) Những mệnh đề nào là mệnh đề đúng? A. (I) và (II) B. (I), (II) và (III) [ads] C. (II) D. (I) + Ký hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R. Cho hàm số f(x) xác định trên K. Ta nói F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu như: A. F(x) = f'(x) + C, C là hằng số tuỳ ý B. F'(x) = f(x) C. F'(x) = f(x) + C, C là hằng số tuỳ ý D. F(x) = f'(x) + Giả sử F(x) là nguyên hàm của hàm số f(x) = 4x – 1. Đồ thị của hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tất cả các điểm chung của đồ thị hai hàm số trên là: A. (0; 1) B. (5/2; 9) C. (0; 1) và (5/2; 9) D. (5/2; 8)
Một số vấn đề chọn lọc nguyên hàm, tích phân và ứng dụng - Vũ Ngọc Huyền
Tài liệu gồm 24 trang trình bày một số vấn đề chọn lọc về chủ đề nguyên hàm, tích phân và ứng dụng cần nắm vững. Nội dung tài liệu gồm các phần: + Phần 1. Lý thuyết và ví dụ mẫu 1. Nguyên hàm và các tính chất cơ bản 2. Hai phương pháp cơ bản để tìm nguyên hàm 3. Khái niệm và các tính chất cơ bản của tích phân 4. Hai phương pháp cơ bản tính tích phân 5. Ứng dụng hình học của tích phân + Phần 2. Bài tập rèn luyện kỹ năng 1. Nguyên hàm – chọn lọc các bài tập về nguyên hàm trong các đề thi thử 2. Tích phân – chọn lọc các bài tập về tích phân trong các đề thi thử 3. Ứng dụng của tích phân trong hình học. [ads] + Phần 3. Bổ sung một số dạng về nguyên hàm – tích phân 1. Tích phân và nguyên hàm một số hàm lượng giác 2. Đổi biến lượng giác 3. Nguyên hàm và tích phân của hàm phân thức hữu tỉ 4. Bảng một số nguyên hàm thường gặp + Phần 4. Ứng dụng của nguyên hàm, tích phân trong thực tế
Tuyển chọn 280 câu hỏi trắc nghiệm nguyên hàm - tích phân - Phan Trung Hiếu
Tài liệu này được tổng hợp và sàng lọc từ các cuốn sách và từ một số nguồn tham khảo trên internet. Các câu hỏi được chia thành 3 cấp độ: Thân thương, Quen thuộc và Lạ phù hợp với thời gian của hình thức thi trắc nghiệm. Hy vọng tài liệu này sẽ giúp ích được cho giáo viên trong việc ra đề thi và các em học sinh trong việc học tập về chuyên đề nguyên hàm – tích phân. [ads]