Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 2 năm 2020 - 2021 trường Quảng Xương 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 2 năm học 2020 – 2021 trường THPT Quảng Xương 2, tỉnh Thanh Hóa. Trích dẫn đề KSCL Toán 12 lần 2 năm 2020 – 2021 trường Quảng Xương 2 – Thanh Hóa : + Một xí nghiệp chế biến sữa bò muốn sản xuất lon đựng sữa có dạng hình trụ bằng thiếc có thể tích không đổi. Để giảm giá một lon sữa khi bán ra thị trường người ta cần chế tạo lon sữa có kích thước sao cho ít tốn kém vật liệu. Để thỏa mãn yêu cầu đặt ra (diện tích toàn phần bé nhất), người ta phải thiết kế lon sữa thỏa mãn điều kiện nào trong các điều kiện sau: A. Chiều cao bằng 3 lần bán kính của đáy. B. Chiều cao bằng bình phương bán kính của đáy. C. Chiều cao bằng đường kính của đáy. D. Chiều cao bằng bán kính của đáy. + Cho hàm số f(x) liên tục trên R và đồ thị hàm số y f x cắt trục hoành tại các điểm có hoành độ lần lượt là a, b, 0, c (a < b < c) (như hình bên dưới). Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số 2 g x f x m trên a c bằng 2021. Tổng tất cả các phần tử của S bằng? + Cho hàm số bậc bốn y f x có đồ thị là đường cong (như hình vẽ bên dưới). Biết hàm số đạt cực trị tại ba điểm 1 2 3 x x x theo thứ tự lập thành một cấp số cộng có công sai là 2. Gọi 1 S là diện tích phần gạch chéo, 2 S là diện tích phần tô đậm. Tỉ số 1 2 S S bằng?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Thành Nhân TP HCM
Nội dung Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Thành Nhân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 4 năm học 2020 – 2021 trường THPT Thành Nhân – thành phố Hồ Chí Minh; đề thi có đáp án mã đề 101. Trích dẫn đề KSCL Toán lớp 12 lần 4 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Cho đồ thị hàm số 3 2 6 5 y f x ax bx cx cắt đường thẳng d y g x tại ba điểm A B C với xA 3, yB 0, xC 3 như hình vẽ. Gọi H K lần lượt là hình chiếu của A C lên trục Ox. Biết rằng 169 25 ABH BCK S S và diện tích phần hình phẳng (tô đậm) giới hạn bởi đồ thị y f x y g x x x B x 3 là 775 972 S. Giá trị f(4) bằng? + Cho hình nón có đỉnh S và chiều cao bằng a 2. Lấy hai điểm M N nằm trên đường tròn đáy sao cho tam giác SMN là tam giác đều và có diện tích bằng 2 3 3 4 a (tham khảo hình vẽ). Mặt phẳng SMN chia mặt xung quanh nón thành hai phần. Tính diện tích phần bề mặt xung quanh của hình nón có đáy là cung nhỏ MN (phần tô đậm). + Trong không gian Oxyz, cho hai điểm A(4;5;1), B(12;-1;5) và mặt phẳng 10 0 P z. Xét mặt cầu S đi qua điểm A, đồng thời tiếp xúc cả hai mặt phẳng P và Oxy. Lấy điểm M nằm trên mặt cầu S. Độ dài đoạn thẳng BM ngắn nhất bằng? File WORD (dành cho quý thầy, cô):