Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kĩ năng tìm biểu thức liên hợp hoặc nhân tử của phương trình vô tỉ - Vũ Hồng Phong

Tài liệu gồm 206 trang hướng dẫn kỹ năng tìm biểu thức liên hợp hoặc nhân tử của phương trình vô tỉ để giải các phương trình vô tỉ, tài liệu được biên soạn bởi thầy Vũ Hồng Phong. Chuyên đề 1 . Phương trình vô tỉ không dùng Casio hỗ trợ Chuyên đề này gồm các phương trình có nghiệm đẹp ta hoàn toàn nhẩm được. Dù vất vả trong việc nhẩm và tính toán nhưng giúp chúng ta tiến bộ khi học môn toán. I. Các phương trình tìm biểu thức liên hợp không dùng Casio Một số ví dụ ngoài cách nhân liên hợp có thể làm theo hướng đưa về tích hoặc tìm tổng và hiệu các căn rồi tìm từng căn theo x. II. Các phương trình tìm nhân tử không dùng Casio Chuyên đề 2 . Tìm biểu thức liên hợp nhờ sự hỗ trợ của máy tính Casio Chuyên đề này xin được giới thiệu các phương trình dùng máy tính cầm tay tìm biểu thức liên hợp có dạng ax^2 + bx + c – (P(x))^(1/k) với a, b, c là các số nguyên. Chuyên đề 3 . Tìm nhân tử của phương trình dùng Casio Chuyên đề 4 . Phương pháp thế trong thủ thuật sử dụng máy tính Casio để tìm nhân tử chung hoặc tìm biểu thức trong nhân liên hợp khi giải phương trình vô tỉ Một kĩ năng rất hữu ích có thể giúp ta giải được một phương trình vô tỉ là kĩ năng tìm nhân tử chung hoặc tìm biểu thức trong nhân liên hợp. Đôi khi việc tìm ra các biểu thức đó là rất khó khăn nếu ta không có máy tính cầm tay trợ giúp. Bài viết này xin được giới thiệu kĩ thuật dùng máy tính cầm tay tìm nhân tử chung hoặc biểu thức để ta xử lí nhân liên hợp có dạng ax^2 + bx + c – (P(x))^(1/k) với a, b, c là các số nguyên. Chuyên đề 5 . Phương pháp cộng dùng trong thủ thuật máy tính cầm tay trợ giúp giải phương trình vô tỉ [ads] Lưu ý khi sử dụng tài liệu : + Bài viết gồm 5 chuyên đề: chuyên đề 1 là các phương trình không dùng Casio, chuyên đề 2 và 3 là các thí dụ dùng máy tính Casio có hướng dẫn sơ lược, chuyên đề 4 và 5 là lí thuyết hướng dẫn chi tiết cách dùng máy tính Caiso tìm biểu thức liên hợp hoặc tìm nhân tử cần xuất hiện trong phương trình của chuyên đề 2 và 3, trong đó có chuyên đề phụ một cách tạo ra một phương trình tích từ các biểu thức phù hợp. +Do có nhiều phương trình mới lạ và phức tạp nên bài viết không là tài liệu để ôn tập cho các kì thi. +Các phương trình trong bài viết có nghiệm là nghiệm của phương trình bậc 3,bậc 4 nên nó phức tạp hơn các dạng phương trình khác. +Các phương trình chưa được sắp xếp thành hệ thống hợp lí và có thể có sai sót. +Tài liệu cung cấp một số ý tưởng để tạo ra các phương trình vô tỷ đưa về dạng tích.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 30 bài toán bất phương trình vô tỉ - Nguyễn Minh Tiến
Tài liệu gồm 18 trang tuyển chọn 30 bài toán bất phương trình vô tỉ có lời giải chi tiết, tài liệu được biên soạn bởi tác giả Nguyễn Minh Tiến.
Tuyển tập 100 bài toán Hệ phương trình
Tài liệu gồm 52 trang tuyển chọn và giải chi tiết 100 bài toán hệ phương trình, các bài toán hệ phương trình được tuyển chọn gồm nhiều dạng bài khác nhau, trong mỗi bài toán lại được giải bằng nhiều phương pháp, cách giải khác nhau nhằm giúp học sinh tiếp cận được nhiều dạng toán về hệ phương trình và có nhiều hướng tiếp cận khi giải bài toán này.
Kinh nghiệm giải Oxy và phương trình trong đề thi Quốc gia - Nguyễn Lê Đức Trọng
Tài liệu gồm 77 trang truyền đạt các kinh nghiệm giải Oxy và phương trình trong đề thi THPT Quốc gia do tác giả đúc kết qua quá trình học tập. Lời giới thiệu : Tôi là một cựu học sinh của trường THPT Chuyên Thủ Khoa Nghĩa, niên khoá 2013 – 2016 và vừa trải qua kì thi THPT Quốc gia năm 2016. Trong quá trình ôn luyện thi môn Toán, tôi có một số kinh nghiệm đúc kết cho bản thân thông qua việc làm bài tập, đặc biệt là trong các dạng bài tập phân loại như hình học giải tích phẳng Oxy, phương trình, hệ phương trình, bất phương trình. Riêng phần bất đẳng thức, giá trị lớn nhất, nhỏ nhất tôi sẽ hoàn thành nếu còn thời gian. Bây giờ, tôi thực hiện bài viết này nhằm chia sẻ với các bạn điều đó, vì trong thời gian sau thi hầu như tôi khá rãnh rỗi. Bài viết không chất chứa nhiều bài toán, vì tôi nghĩ với xu thế thị trường sách tham khảo phong phú như bây giờ thì việc tìm những quyển sách tham khảo cho mỗi bạn không hề khó khăn, các bạn có rất nhiều sự lựa chọn tác giả và đầu sách phù hợp với khả năng, sở thích của mình. Vì thế, bài viết này chỉ đơn giản là một tài liệu nhằm trao đổi kinh nghiệm trong việc giải toán, một công cụ để các bạn tìm ra lời giải cho bài toán, chứ không nhằm tiếp thu nhiều dạng toán khác nhau. [ads] Bài viết này phù hợp với các bạn học sinh đã học xong chương trình toán lớp 10, những bạn có mục tiêu điểm 7, 8, 9 môn Toán trong kì thi THPT Quốc gia và tuyển sinh ĐH, CĐ sắp tới. Vì cũng chỉ là người đã từng tiếp thu tri thức, người đã đi trước các bạn một bước trong quá trình chuẩn bị cho kì thi lớn trong cuộc đời học sinh, nên trình độ nhận thức của tôi đôi khi cũng rất hạn chế. Bài viết này là những nhận thức chủ quan, có khi đúng, có khi sai, nhưng tôi sẽ cố gắng hạn chế tối đa những sai lầm. Chúng ta có thể trao đổi với nhau để tìm ra con đường ngắn hơn để đi đến kết quả cuối cùng. Tôi luôn sẵn sàng tiếp nhận những ý kiến trao đổi của các bạn và nhìn nhận sai lầm của mình. Hi vọng bài viết sẽ là công cụ hữu ích cho các bạn trong bước đường chuẩn bị cho kì thi THPT Quốc gia 2017, 2018 và những năm tiếp theo. Chúc mọi người, đặc biệt là các bạn có được một quá trình rèn luyện và chuẩn bị tốt cho kì thi của riêng mình, đạt kết quả cao nhất.
164 bài toán hệ - bất - phương trình trong các đề thi thử Quốc gia 2016 - Trần Văn Tài
Tài liệu gồm 92 trang tuyển tập 164 bài toán hệ phương trình và bất phương trình trong các đề thi thử Quốc gia 2016 từ các trường và các sở GD và ĐT trên toàn quốc, mỗi bài toán đều được giải chi tiết đến đáp số cuối cùng. Các bài toán được sưu tầm và tổng hợp bởi thầy Trần Văn Tài. Hy vọng qua các lời giải chi tiết, bạn đọc có thể năm vững được các kỹ năng giải hệ phương trình và bất phương trình mức độ vận dụng cao, để từ đó không con cảm thấy “e ngại” các bài toán điểm 9, 10 trong đề thi THPT Quốc gia môn Toán. [ads]