Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng của tích phân trong hình học

Tài liệu gồm 376 trang được biên soạn bởi quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em, tuyển tập 647 câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong hình học, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình tự học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Khái quát nội dung tài liệu ứng dụng của tích phân trong hình học: Phần 1 . Câu hỏi và bài tập mức độ nhận biết: 100 câu. + Cho hình phẳng D giới hạn bởi đường cong y = e mũ x, trục hoành và các đường thẳng x = 0, x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu? + Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = cos x,  y = 0, x = 0, x = π quay xung quanh Ox. Phần 2 . Câu hỏi và bài tập mức độ thông hiểu: 199 câu. + Diện tích hình phẳng giới hạn bởi các đường y = √(1 + ln x)/x, y = 0, x = 1, x = e là S = a√2 + b. Khi đó tính giá trị a^2 + b^2? + Tính diện tích hình phẳng giới hạn bởi đồ thị (P): y = x^2 − 4x + 5 và các tiếp tuyến với (P) tại A(1;2) và B(4;5). [ads] Phần 3 . Câu hỏi và bài tập mức độ vận dụng thấp: 199 câu. + Diện tích hình phẳng nằm trong góc phần tư thứ nhất, giới hạn bởi các đường thẳng y = 8x, y = x và đồ thị hàm số y = x^3 là phân số tối giản. Khi đó a + b bằng? + Bác Năm làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền bác Năm phải trả là? Phần 4 . Câu hỏi và bài tập mức độ vận dụng cao: 100 câu. + Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < b < c như hình vẽ. Xét 4  mệnh đề sau:  (1): f(c) < f(a) < f(b). (2): f(c) > f(b) > f(a). (3): f(a) > f(b) > f(c). (4): f(a) > f(b). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho số dương a thỏa mãn hình phẳng giới hạn bởi các đường parabol y = ax2 − 2 và y = 4 − 2ax2 có diện tích bằng 16. Tìm giá trị của a. Phần 5 . Ứng dụng tích phân giải bài toán thực tế: 49 câu. + Một quả trứng có hình dạng khối tròn xoay, thiết diện qua trục của nó là hình elip có độ dài trục lớn bằng 6, độ dài trục bé bằng 4. Tính thể tích quả trứng đó. + Sân chơi cho trẻ em hình chữ nhật có chiều dài 100 m và chiều rộng là 60 m người ta làm một con đường nằm trong sân (như hình vẽ).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cơ bản ứng dụng tích phân trong hình học ôn thi TN THPT môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (giáo viên Toán trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế), hướng dẫn giải các dạng toán cơ bản chuyên đề ứng dụng tích phân trong hình học trong chương trình môn Toán lớp 12, hướng đến kỳ thi tốt nghiệp THPT môn Toán; tài liệu phù hợp với các em học sinh lớp 12 mất gốc Toán. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH DIỆN TÍCH HÌNH PHẲNG. I. TÓM TẮT LÝ THUYẾT. Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f x liên tục trên đoạn a b trục hoành và hai đường thẳng x a x b được tính theo công thức: d b a S f x x (1). Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f x g x liên tục trên a b và hai đường thẳng x a x b được tính theo công thức: d b a S f x g x x (2). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH THỂ TÍCH KHỐI TRÒN XOAY. I. TÓM TẮT LÝ THUYẾT. Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay. Dạng 1: (Hình phẳng quay quanh Ox) Cho hình phẳng được giới hạn bởi đồ thị hàm số y f x liên tục trên a b trục Ox và hai đường thẳng x a x b quanh trục Ox ta được khối tròn xoay có thể tích là: d 2 b x a V f x x (3). Dạng 2: Thể tích khối tròn xoay có được khi quay nhiều đồ thị hàm số quanh một trục. Ta tiến hành chia phần thể tích V thành các phần thể tích thành phần 1 2 V V mà mỗi phần được tính bằng các công thức đã cho. II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT.
Chuyên đề các dạng tích phân hàm ẩn điển hình mức độ VD - VDC
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), hướng dẫn phương pháp giải các dạng bài tập tích phân hàm ẩn điển hình mức độ vận dụng và vận dụng cao (VD – VDC), giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng. Dạng 1 . Áp dụng các quy tắc và đạo hàm của hàm số hợp trang. + Quy tắc đạo hàm tích 3. + Quy tắc đạo hàm thương 7. + Áp dụng công thức đạo hàm của hàm chứa căn 15. + Áp dụng công thức đạo hàm của hàm mũ 18. + Áp dụng công thức đạo hàm của hàm lôgarit 19. + Áp dụng các công thức đạo hàm khác 21. Dạng 2 . Phương pháp đổi biến 22. + Tích phân hàm ẩn đổi biến dạng 1 22. + Tích phân hàm ẩn đổi biến dạng 2 28. + Tích phân hàm ẩn đổi biến dạng 3 39. + Tích phân hàm ẩn đổi biến dạng 4 49. + Tích phân hàm ẩn đổi biến dạng 5 51. + Tích phân hàm ẩn đổi biến dạng 6 53. Dạng 3 . Phương pháp từng phần 55. + Trường hợp riêng 68. Dạng 4 . Phương trình vi phân tuyến tính cấp 1 78.
Chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 398 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Các phương pháp tính nguyên hàm cơ bản. DẠNG 2 Các phương pháp tính tích phân cơ bản. DẠNG 3 Tích phân cho bởi nhiều hàm. DẠNG 4 Kết hợp đổi biến, từng phần tính tích phân. DẠNG 5 Tích phân hàm ẩn phần 1. DẠNG 6 Tích phân hàm ẩn phần 2. DẠNG 7 Tích phân đặc biệt kết hợp với tích phân hàm ẩn. DẠNG 8 Tính tích phân bằng phương pháp vi phân. DẠNG 9 Tính tích phân dựa vào đồ thị. DẠNG 10.1 Ứng dụng tích phân tích diện tích hình phẳng. DẠNG 10.2 Ứng dụng tích phân tính diện tích hình phẳng. DẠNG 11 Toán thực tế liên quan đến diện tích hình phẳng. DẠNG 12 Ứng dụng tích phân vào bài toán chuyển động. DẠNG 13 Tích phân trong đề thi của Bộ Giáo dục và Đào tạo.
Một số bài toán chọn lọc về tích phân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số bài toán chọn lọc về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.