Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Hoàng Việt

Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm (có đáp án) chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §1 – HÀM SỐ LƯỢNG GIÁC 1. A KIẾN THỨC CẦN NHỚ 1. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 2. + Dạng 1. Tìm tập xác định của hàm số lượng giác 2. + Dạng 2. Tính chẵn lẻ của hàm số 6. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 7. C BÀI TẬP TRẮC NGHIỆM 12. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 19. A KIẾN THỨC CẦN NHỚ 19. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 21. + Dạng 1. Giải các phương trình lượng giác cơ bản 21. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 23. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 25. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước 27. C BÀI TẬP TRẮC NGHIỆM 29. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 37. A KIẾN THỨC CẦN NHỚ 37. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 38. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 38. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 41. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 45. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 48. + Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x 50. C BÀI TẬP TRẮC NGHIỆM 51. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 59. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 59. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 59. + Dạng 2. Biến đổi asinx + bcosx 62. + Dạng 3. Biến đổi đưa về phương trình tích 64. + Dạng 4. Một số bài toán biện luận theo tham số 67. B BÀI TẬP TỰ LUYỆN 70. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 73. A Đề số 1 73. B Đề số 2 79. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 83.

Nguồn: toanmath.com

Đọc Sách

Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.
Chuyên đề phương trình lượng giác - Trần Duy Thúc
Tài liệu Chuyên đề phương trình lượng giác của thầy Trần Duy Thúc gồm 39 trang, tài liệu tóm tắt những công thức lượng giác thường gặp, các dạng phương lượng giác cơ bản và nâng cao được đan xen với 50 ví dụ về các phương trình lượng giác điển hình. Phần cuối tài liệu là tuyển tập 160 bài toán phương trình lượng giác được trích từ các đề thi Quốc gia, đề dự bị và đề thi thử.
Các kỹ thuật phổ biến nhất giải phương trình lượng giác - Nguyễn Hữu Biển
Các em học sinh thân mến, bài tập giải phương trình lượng giác là một trong nhưng nội dung thường xuyên xuất hiện trong đề thi đại học, kiến thức về giải phương trình lượng giác các em được học trong chương trình giải tích lớp 11 kết hợp với các công thức và kiến thức nền tảng của lớp 10. Để giải phương trình lượng giác, điều đầu tiên các em cần là phải biết cách học thuộc các công thức biến đổi lượng giác cơ bản, tiếp theo các em cần học tập siêng năng, chuyên cần để đúc rút kinh nghiệm cho bản thân, từ đó biết phân chia các dạng toán và kỹ thuật giải tương ứng để đối phó tốt với mọi loại bài về giải phương trình lượng giác trong đề. [ads] Cuốn tài liệu CÁC KỸ THUẬT PHỔ BIẾN NHẤT GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC được chắt lọc, đánh máy công phu, trình bày đẹp. Nội dung rất hữu ích cho học sinh lớp 11, học sinh ôn thi đại học môn Toán và quý thầy cô giáo dạy Toán THPT. Tài liệu được biên soạn tỉ mỉ, phân chia dạng toán rõ ràng, công thức đầy đủ, mỗi phần đều có ví dụ minh họa và hướng dẫn. Học sinh bị mất gốc kiến thức về lượng giác cũng có thể học lại từ đầu không mấy khó khăn. Hy vọng rằng với cuốn tài liệu hữu ích này, các em học sinh sẽ có một cẩm nang để chinh phục phương trình lượng giác trong thi cử. Tài liệu rất có thể vẫn còn một vài khiếm khuyết, rất mong nhận được ý kiến từ các em học sinh và độc giả.