Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Yên Phong - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Yên Phong, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Phong – Bắc Ninh : + Tìm tất cả các số nguyên dương a, b sao cho a + b2 chia hết cho a2b − 1. Cho các đường thẳng: (d1): 2x + y = 6; (d2): 3x + y = 10; (d3): (2m + 1)x + 2y = m + 7. Tìm các giá trị của m để các đường thẳng trên đồng quy tại một điểm. + Cho đường tròn (O; R) và một điểm A nằm bên ngoài đường tròn (O; R). Từ A vẽ hai tiếp tuyến AB, AC của (O; R) (B, C là các tiếp điểm). Từ B vẽ đường kính BD của (O; R), đường thằng AD cắt (O; R) tại các điểm E (khác điểm D), gọi H là giao điểm của OA và BC. 1. Chứng minh AE.AD = AH.AO. 2. Qua O vẽ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh rằng FD là tiếp tuyến của (O; R). 3. Đường thẳng đi qua trung điểm I của đoạn thẳng AB vuông góc với cạnh OA tại M cắt đường thẳng DF tại N. Tam giác AND là tam giác gì? Vì sao? + Trên bảng có các số tự nhiên từ 1 đến 2022, người ta làm như sau: Lấy ra hai số bất kì và thay bằng hiệu của chúng, cứ làm như vậy đến khi còn một số trên bảng thì dừng lại. Có thể làm để trên bảng chỉ còn lại số 2 được không? Giải thích?

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022.
Đề HSG cấp huyện Toán 9 năm 2022 - 2023 phòng GDĐT Quỳnh Lưu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 08 tháng 12 năm 2022. Trích dẫn Đề HSG cấp huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Cho các số thực dương a, b, c thỏa mãn: abc = 1. Tìm giá trị lớn nhất của biểu thức Q. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: DK là tiếp tuyến của đường tròn ngoại tiếp tam giác KHC. + Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho MN đạt giá trị nhỏ nhất.
Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Di Linh - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 10 tháng 11 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Di Linh – Lâm Đồng : + Một con Robot được thiết kế để có thể đi thẳng, quay một góc 90° sang trái hoặc sang phải. Robot xuất phát từ vị trí A0 đi thẳng 1cm, quay sang trái rồi đi thẳng 1cm, quay sang phải rồi đi thẳng 2cm, quay sang trái rồi đi thẳng 2cm, quay sang phải rồi đi thẳng 3cm, quay sang trái rồi đi thẳng 3cm … cuối cùng quay sang phải rồi đi thẳng 2022cm, quay sang trái rồi đi thẳng 2022cm thì đi đến đích ở vị trí A2022. Tính khoảng cách giữa nơi xuất phát và đích đến của con Robot. + Một đoàn từ thiện phát vở cho các học sinh có hoàn cảnh khó khăn. Nếu mỗi phần quà 22 quyển vở thì còn thừa một quyển. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà. Hỏi đoàn từ thiện có bao nhiêu quyển vở? Biết rằng mỗi phần quà không quá 30 quyển vở. + Cho tam giác ABC vuông tại A có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh BH = AC.